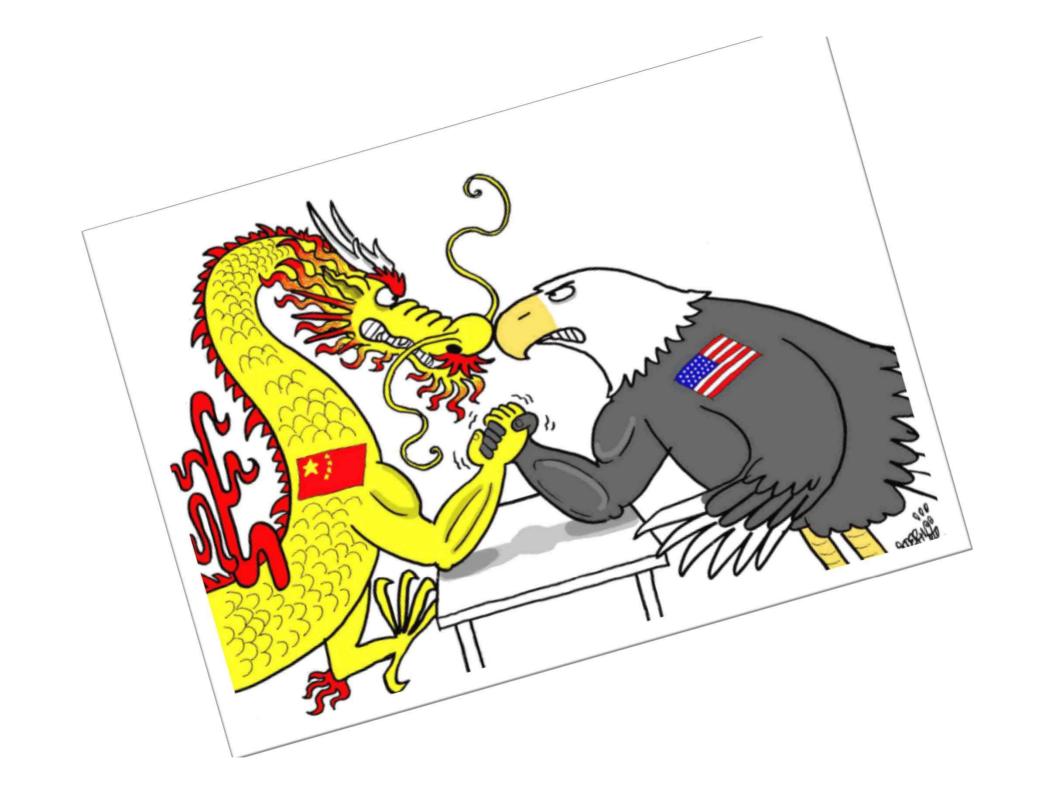
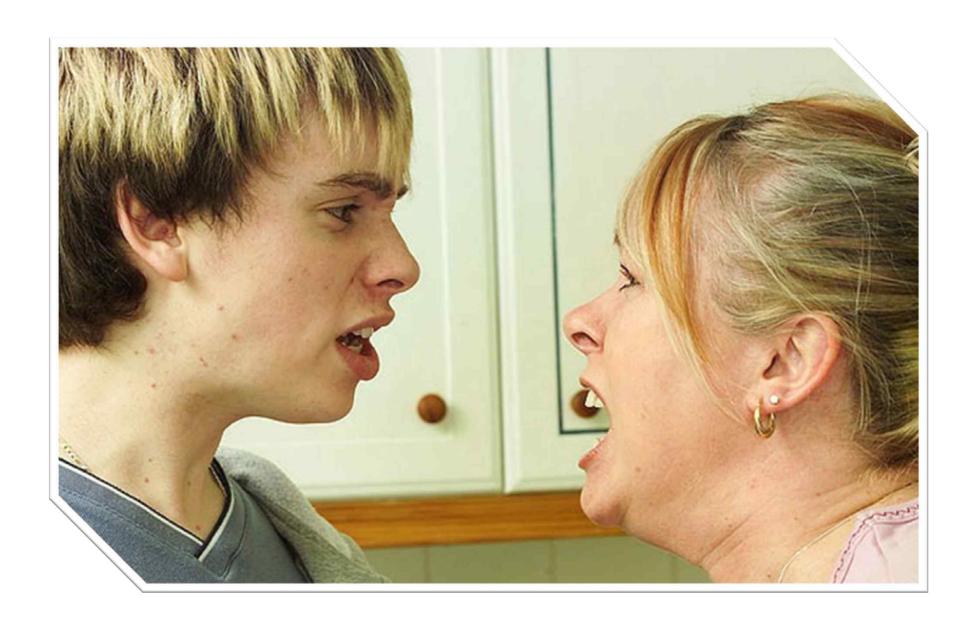
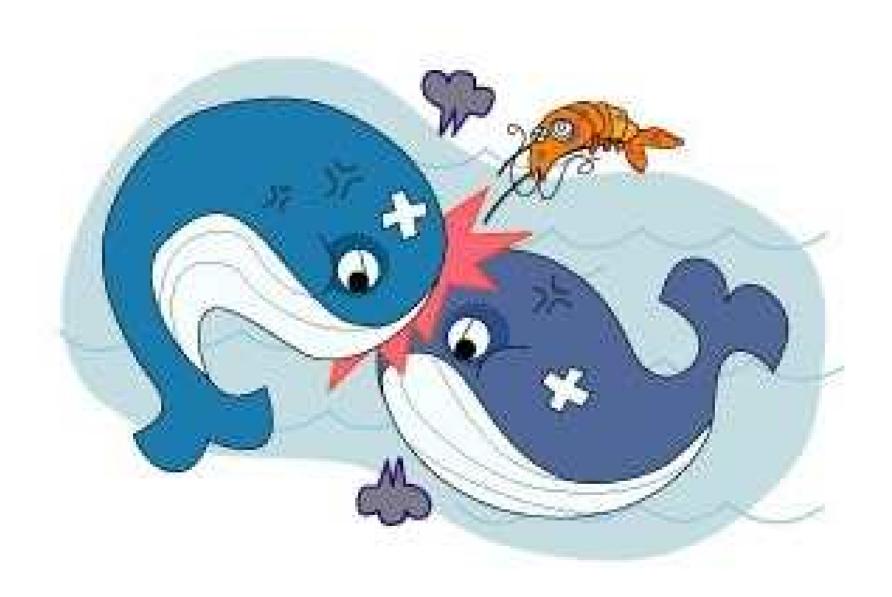
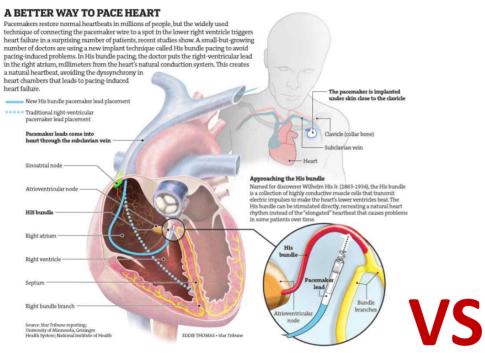

HBP vs. CRT for Patients with LV Dysfunction & LBBB

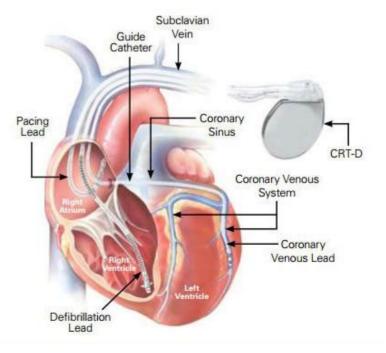

-CRT is still the Gold Standard-

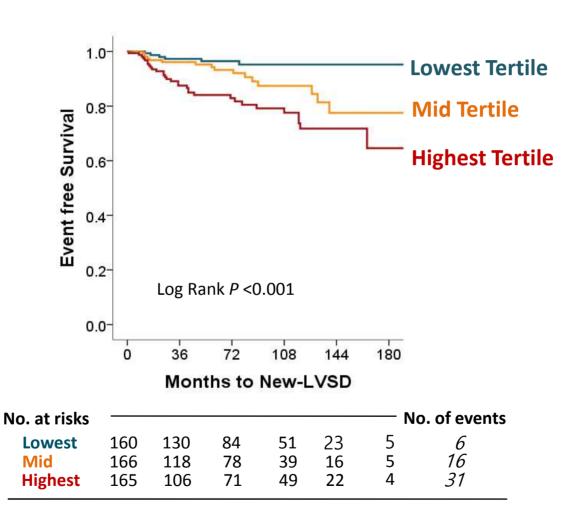
Sungkyunkwan University School of Medicine

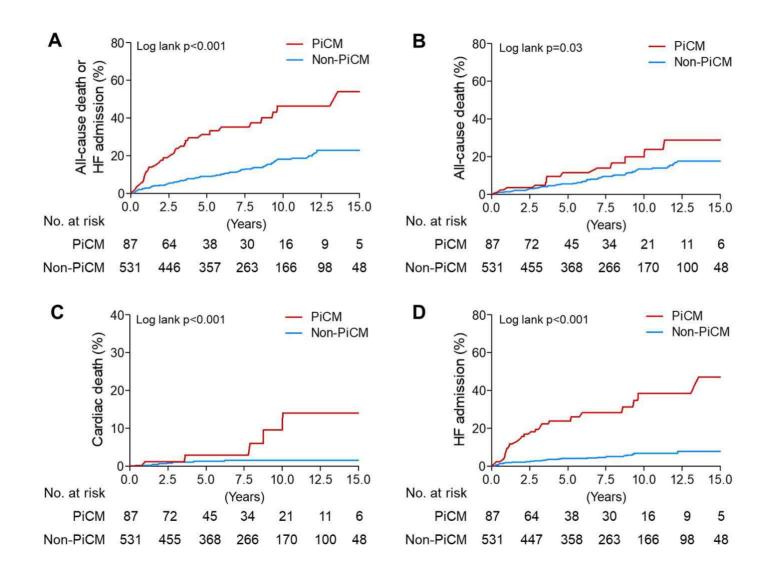

Samsung Medical Center Arrhythmia Center


Seung-Jung Park

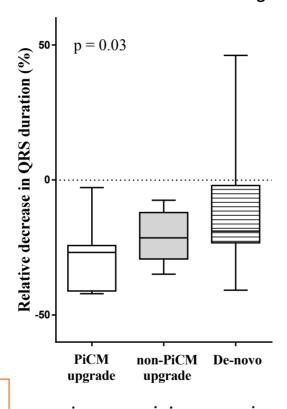





His-Bundle Pacing is a reasonable alternative to CRT

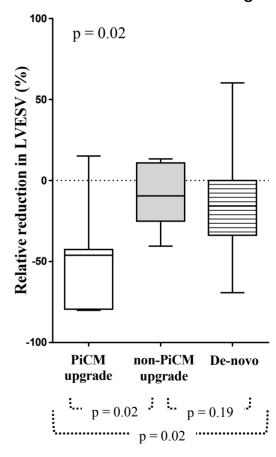

CRT is still the Gold Standard

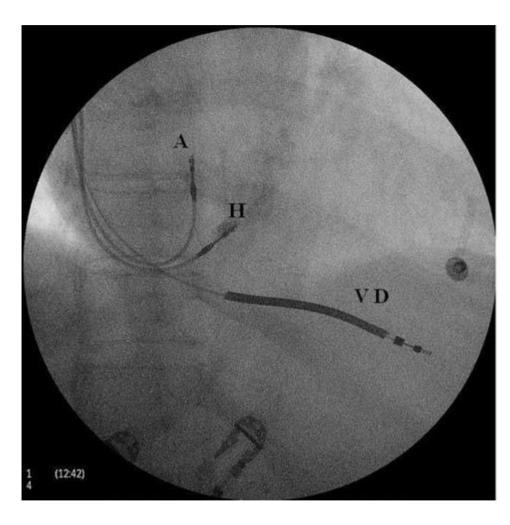
Chronic RV pacing & New-onset LV systolic dysfunction



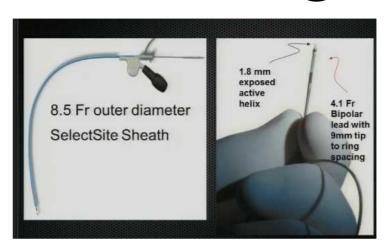
Worse outcomes of chronic RV-pacing

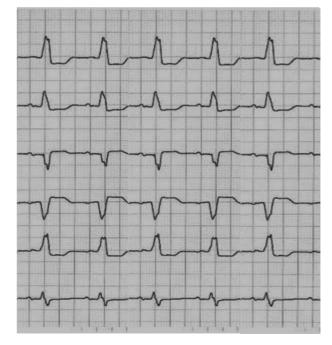
CRT upgrade for PiCM


Electrical reverse remodeling


Absolute change = Pre-CRT – post-CRT


Relative change =
$$\frac{pre - CRT - post - CRT}{pre - CRT}$$


Mechanical reverse remodeling



Direct His Bundle Pacing

Advantages of CRT over HBP

- Implantation success rate
 ; particularly in anomalous structure or valve disease
- Stability of the Lead
- Concern for disease progression of conduction system
- Availability of defibrillator
- Automated optimization algorithm
- More data: more patients for longer duration

Advantages of CRT over HBP

- Implantation success rate
 ; particularly in anomalous structure or valve disease
- Stability of the Lead
- Concern for disease progression of conduction system
- Availability of defibrillator
- Automated optimization algorithm
- More data: more patients for longer duration

Heart Rhythm Society Scientific Sessions

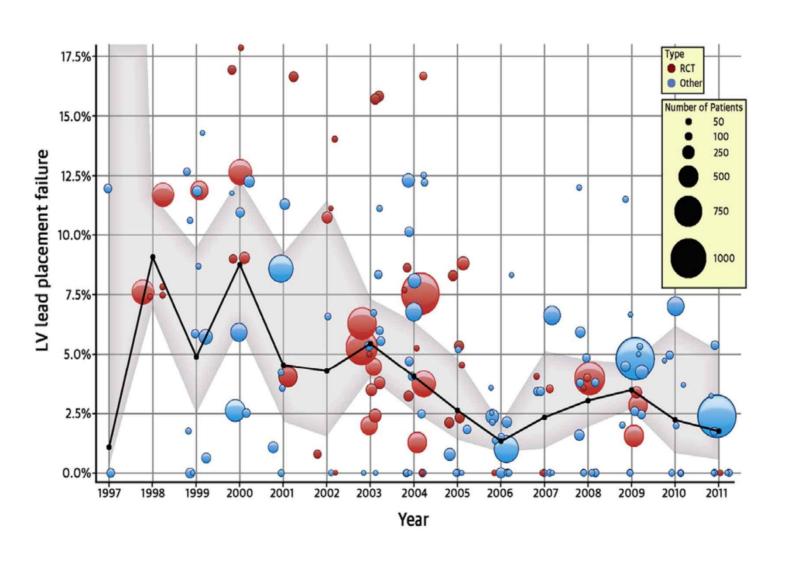
His-SYNC: His bundle pacing not superior to biventricular pacing in cardiac resynchronization therapy

May 9, 2019

SAN FRANCISCO — His bundle pacing as first-line therapy did not improve ECG or echocardiographic parameters compared with biventricular pacing in patients with HF requiring cardiac resynchronization therapy, according to the His-SYNC trial presented at the Heart Rhythm Society Annual Scientific Sessions.

The researchers conducted an investigator-initiated randomized pilot trial to compare His bundle pacing as a first-line strategy with biventricular pacing in 41 patients (mean age, 64 years; 38% women; mean left ventricular ejection fraction, 28%; mean QRS width, 168 ms) with HF meeting guideline recommendations for CRT.

Crossover rate: HBP → BiV pacing (48%) vs. BiV pacing → HBP (26%)


No superiority of HBP over BiV pacing (In the intention-to-treat analysis) regarding QRS narrowing, 6-month LVEF improvement, and 12-month mortality/hospitalization.

Heart Rhythm. 2019. pii: S1547-5271(19)30440-0.

Failure rate of HBP

Study	Number of Patients, n	Overall Reported Technical Success Rate, n (%)	Reported Selective HBP Rate, n (%)	Threshold at Time of Implant, V (0.5 ms Pulse)	Distribution of Heart Failure Within Study Population	Notes			
Cantu et al 2006 ²⁶	17	17 (100)	11 (65)	1.7±1.2 (selective) 5 (29%) had EF <40%		All patients had suprahisian block			
				3.1±1.6 (nonselective)					
Catanzariti et al 2006 ²⁸	24	23 (96)	17 (74)	1.61±0.55	13 (56%) reported to have heart disease	All patients had suprahisian block			
Zanon et al 2006 ⁵⁰	26	26 (100)	24 (92)	2.3±1.0	26 (100%) reported to have cardiomyopathy	All patients had preserved His-bundle conduction			
Lustgarten et al 2010 ⁵³	10	10 (100)	10 (100)	Success rate 59~100% and conventional ions and suprahisian block					
Kronborg et al 2011 ⁴¹	38	32 (84)	4 (13)						
Zanon et al 2011 ⁵⁴	307	Not known	87 (28)			ad suprahisian block			
Lustgarten et al (2015) ⁴⁵	29	17 (59) achieved HBP with QRS n		Failure	~20%	97%) had left bundle			
Sharma et al 2015 ³⁷	94	75 (80)	34 (45)	1.35±0.9	24 (32%) reported to have heart failure	44 (59%) had atrioventricular conducting system disease			
Vijayaraman et al 2015 ⁴⁴	100	84 (84)	22 (26)	1.4±1 V	Mean ejection fraction 54±10%	46 patients had atrioventricular nodal block, 54 patients had infranodal atrioventricular block			
Ajijola et al 2017 ⁴⁶	21	16 (76)	1 (6)	1.9±1.2 V at 0.6±0.2 ms	20 (95%) reported to have EF <35%	All patients reported to have an indication for CRT			
Huang et al 2017 ⁵²	52	42 (81)	38 (90)	1.5±1	42 (100%) reported to have heart failure	All patients had AF and underwent atrioventricular node ablation			
Sharma et al 2018 ⁴⁷	106	95 (90)	47 (50)	1.4 ± 0.9 at 1 ms (His bundle capture) 2 ± 1.2 at 1 ms (narrowing of BBB)	106 (100%) reported to have cardiomyopathy (LVEF 30±10% at baseline)	All patients had a CRT indication			
Abdelrahman et al 2018 ³⁹	332	304 (92)	115 (38)	1.30±0.85 at 0.79±0.26 ms	85 (26%) reported to have heart failure	Includes patients with wide range of pacemaker indications			

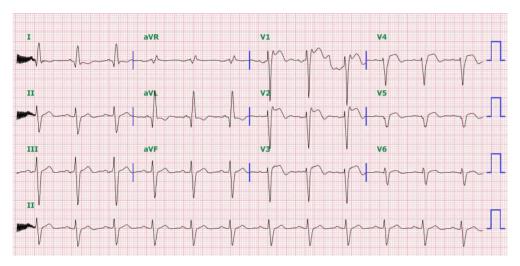
Failure rate of CRT

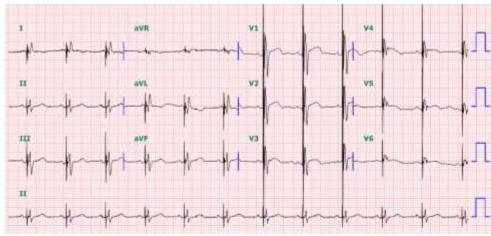
Procedural complexity of HBP

- Procedure time (70.2 ±34 minutes)
- Capture threshold (1.30±0.85V at 0.79±0.26ms)
- Early lead revision (4.2%)
- Concerns for subsequent development of low infra-Hisian block remain.

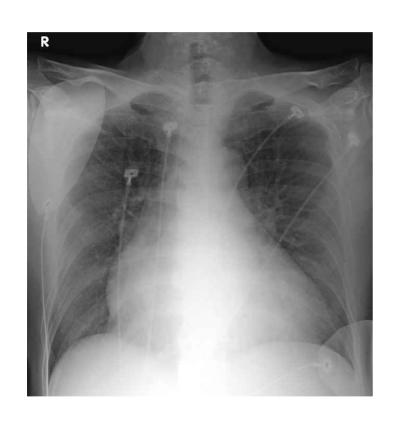
Advantages of CRT over HBP

- Implantation success rate; particularly in anomalous structure or valve disease
- Stability of the Lead
- Concern for disease progression
 of conduction system
- Availability of defibrillator
- Automated optimization algorithm
- More data: more patients for longer duration

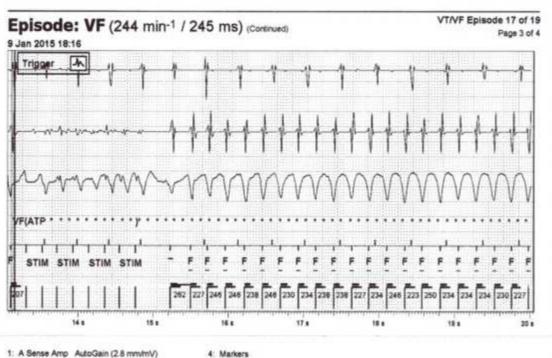

M/60, ICMP

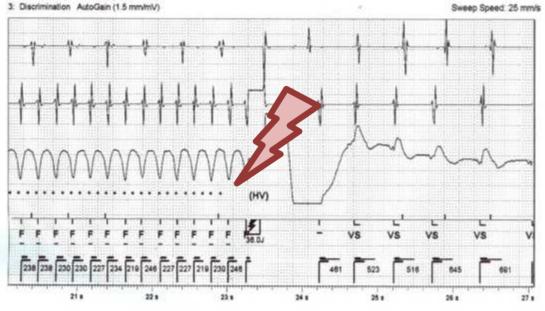

• 1984 AMI

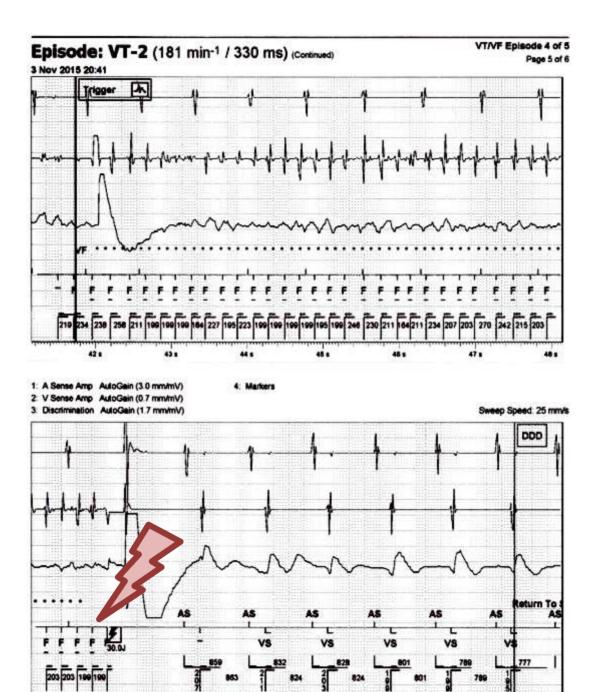
• 2010 Echo: ICMP with severe LV systolic dysfunction(LVEF = 19%)


• 2014. 07 CRT-ICD implantation

Wide QRS & CRT-D




ICMP



- 2: V Sense Amp AutoGain (0.6 mm/mV)
- 3: Discrimination AutoGain (1.5 mm/mV)

40.

50 s

..

62 8

63 s

.

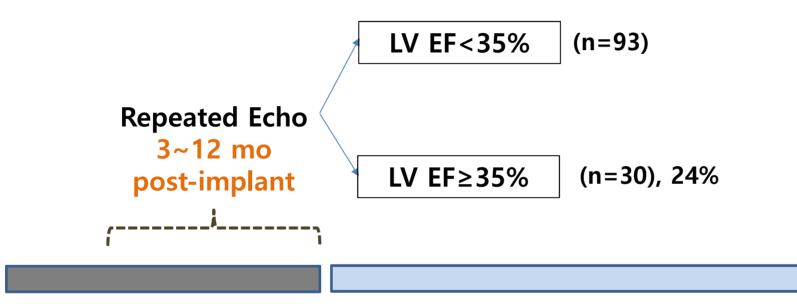
Sudden death and ICDs

Europace (2013) 15, 1594-1600 doi:10.1093/europace/eut097

Left ventricular function improvement after prophylactic implantable cardioverter-defibrillator implantation in patients with non-ischaemic dilated cardiomyopathy

Wolfram Grimm^{1*}, Nina Timmesfeld², and Elena Efimova³

Department of Cardiology, University Hospital of Marburg and Gießen, Philipps-University Marburg, Baldingerstraße, 35033 Marburg, Germany; ²Institute for Medical Biometry and Epidemiology, Philipps-University Marburg, Marburg, Germany; and ³Heart Center, Department of Electrophysiology, University of Leipzig, Leipzig, Germany


Received 19 January 2013; accepted after revision 27 March 2013; online publish-ahead-of-print 2 May 2013

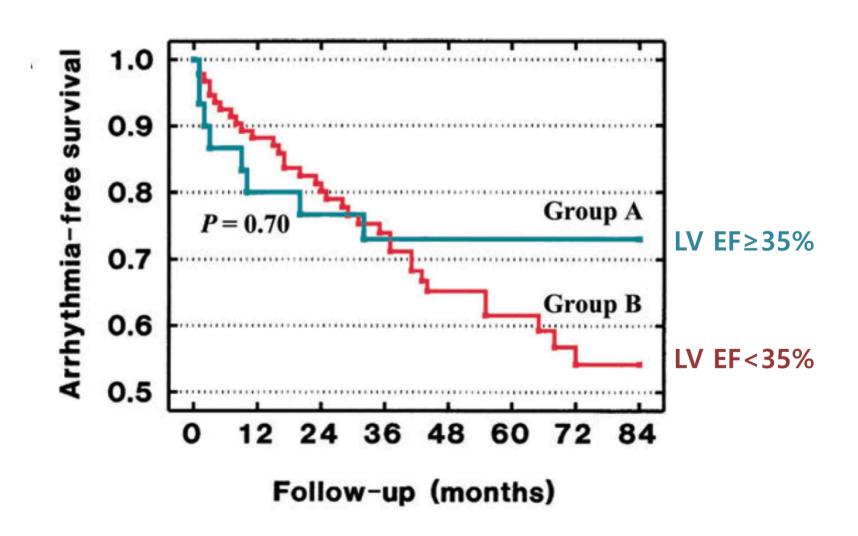
Single center (Marburg, Germany) ICD-Registry

(1)123 non-ischemic DCM with NYHA II~III & LV EF ≤35%

despite optimal medical therapy (OMT) \geq 3 mont

LVEF reassess & follow-up

N=123
Initial ICD/CRTD
(LV EF<35%)


74 mo follow-up

Appropriate ICD therapies for VT/VF (stored electrograms),
All-cause mortality, &
Heart-transplant-free survival

Clinical outcomes

	All patients	No LV function improvement	LV function improvement	P value	HR (95% CI) ^a
Patients, n	123	93	30		
Follow-up duration (months)	74 <u>+</u> 46	72 <u>+</u> 48	81 <u>+</u> 41		
Appropriate ICD therapy, n (%)	44 (36)	34 (37)	10 (33)	0.70	1.15 (0.57-2.33)
Inappropriate ICD therapy, n (%)	17 (14)	12 (13)	5 (17)	0.77	0.85 (0.30-2.43)
Total mortality, n (%)	33 (27)	30 (32)	3 (10)	0.019	3.75 (1.14–12.31)
Heart transplant, n (%)	9 (7)	9 (10)	0 (0)	0.066	

Arrhythmia-free survival

LVEF reassess & follow-up

N=123 **Initial**

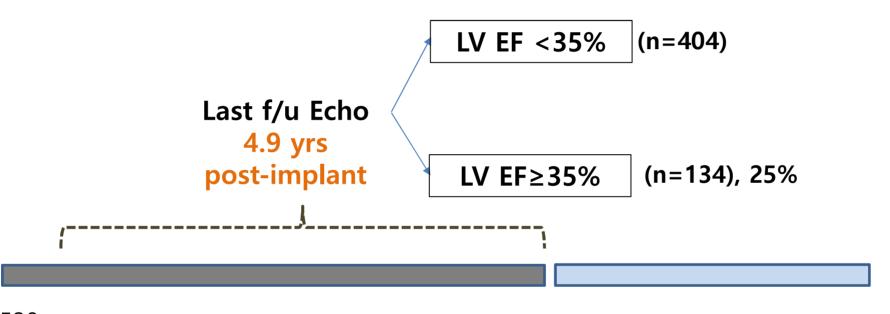
Repeated Echo 3~12 mo post-implant

74 mo follow-up

Appropriate ICD therapies for VT/VF (stored electrograms),
All-cause mortality, &
Heart-transplant-free survival

→ Multicenter Prospective Study ?

Changes in Follow-Up Left Ventricular **Ejection Fraction Associated With Outcomes in Primary Prevention** Implantable Cardioverter-Defibrillator and Cardiac Resynchronization Therapy **Device Recipients**

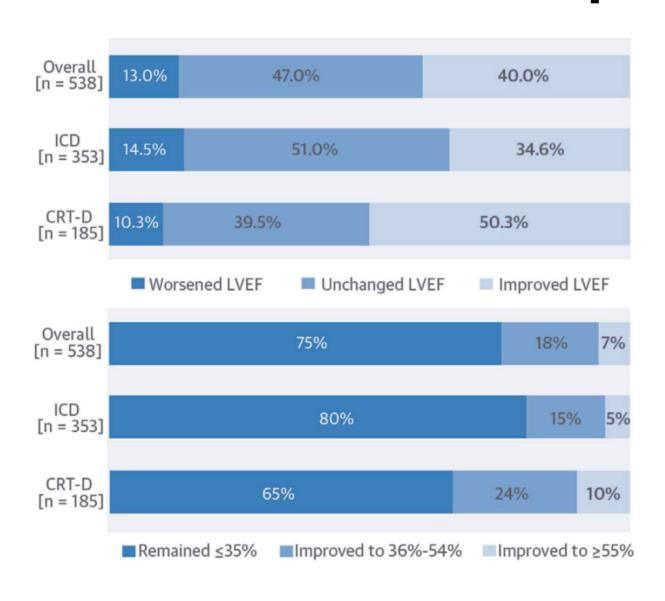

Yiyi Zhang, PhD,* Eliseo Guallar, MD, DRPH,* Elena Blasco-Colmenares, MD, PhD,† Barbara Butcher, RN,† Sanaz Norgard, BA,† Victor Nauffal, MD,† Joseph E. Marine, MD,† Zayd Eldadah, MD, PhD,‡ Timm Dickfeld, MD, PhD,§ Kenneth A. Ellenbogen, MD, Gordon F. Tomaselli, MD, Alan Cheng, MD

ABSTRACT

BACKGROUND Heart failure patients with primary prevention implantable cardioverter-defibrillators (ICD) may experience an improvement in left ventricular ejection fraction (LVEF) over time. However, it is unclear how LVEF improvement affects subsequent risk for mortality and sudden cardiac death.

OBJECTIVES This study sought to assess changes in LVEF after ICD implantation and the implication of these changes on subsequent mortality and ICD shocks.

LVEF reassess & follow-up



N=538 Initial ICD/CRTD (LV EF<35%)

2 yrs follow-up

Appropriate ICD therapies All-cause mortality

F/U LVEF after ICD implant

ICD shock

	Overall (n $=$ 464)			ICD Patients (n = 298)			CRT-D Patients (n = 166)		
Last LVEF Measurement*	n (%)	Events	Incidence Rate†	n (%)	Events	Incidence Rate†	n (%)	Events	Incidence Rate†
≤35%	338 (73)	23	5.5	233 (78)	13	4.8	105 (63)	10	6.8
36%-54%	91 (20)	3	2.4	49 (16)	2	3.5	42 (25)	1	1.5
≥55%	35 (8)	1	1.7	16 (5)	0	0	19 (11)	1	2.6

^{*100} person-years

Outcomes After ICD Replacement for Primary Prevention of SCD

- Mayo Clinic & Beth Israel Deaconess Medical Center
- January 2001 ~ June 2011
- in **253 patients** (mean age, 68.3±12.7 years; 82% men)
- (1) undergoing ICD replacement (initially implanted for primary prevention)
 - (2) no appropriate ICD therapy prior to replacement

LVEF reassess & follow-up

 LVEF obtained within 6 months before or 3 months after ICD generator replacement

Initial ICD (LV EF<35%)

Replacement

-6mo ~ +3mo LV EF

4.8 (±1.9) years

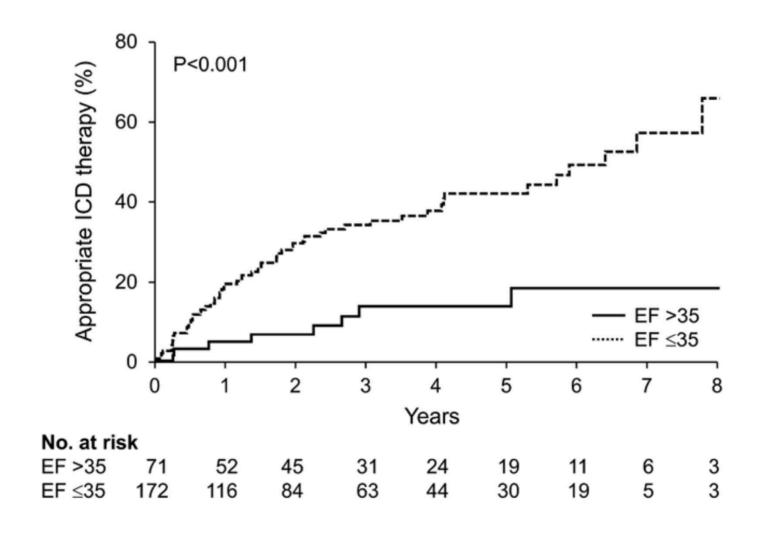
3.3 (1.8–5.3) years

Appropriate ICD therapy
: Anti-tachycardia pacing
or shock
for VT/VF

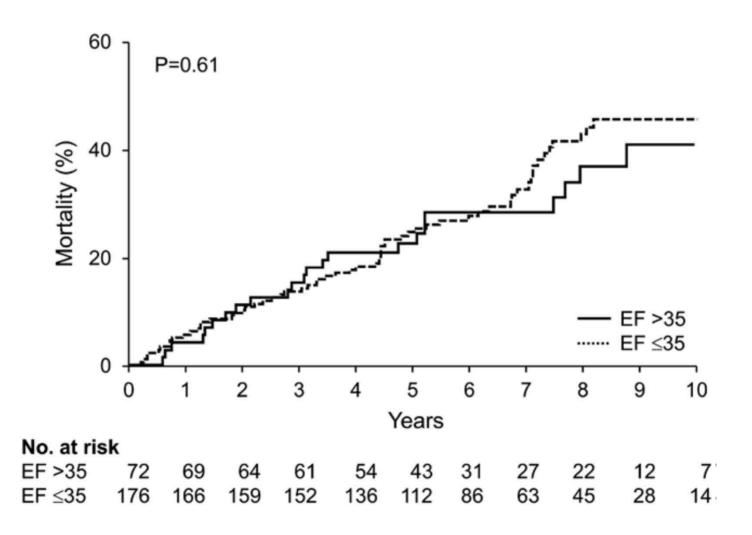
Study cohort
Primary prevention ICD without appropriate ICD therapy prior to generator replacement
(N=135+118) N=253

LV EF <35%

(n=181, 72%)


26.0±6.4%

LV EF ≥35%


(n=72, **28%**)

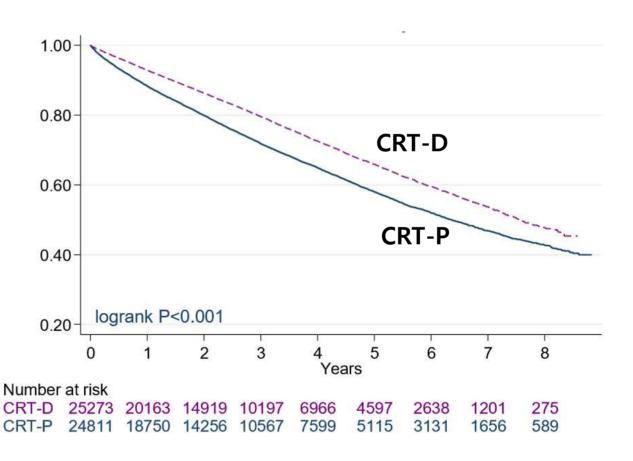
47.7±9.6%

Rates of Appropriate ICD Therapy

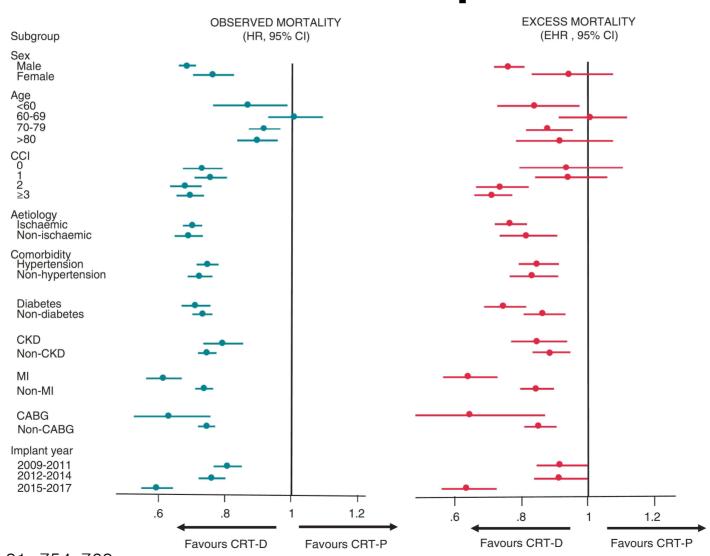
Mortality

ICD settings

Clinical Characteristics*	Overall Cohort (n=253)	EF≤35% (n=181)	EF>35% (n=72)	<i>P</i> Value	
Laboratory parameters					
Hemoglobin, g/dL	12.9 (1.9)	12.8 (2.0)	13.1 (1.8)	0.35	
Serum sodium, mEq/L	139.4 (3.1)	139.3 (3.2)	139.6 (3.1)	0.57	
Creatinine, mg/dL	1.4 (1.0)	1.5 (1.1)	1.3 (0.7)	0.040	
Blood urea nitrogen, mg/dL	27.9 (18.1)	29.2 (19.7)	25.0 (13.8)	0.17	
Estimated glomerular filtration rate, mL/min per 1.73 m ²	65.3 (27.4)	63.8 (27.1)	69.2 (28.0)	0.18	
Programmed zone (median and minimum-maximum), beats p	per min				
VF zone	188 (170–316)	188 (170–316)	200 (185–220)		
VT zone	164 (150–194) (n=72)	160 (150–194) (n=54)	170 (140–182) (n=18)		

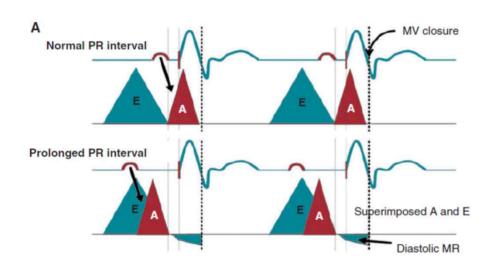

Cumulative rates of appropriate ICD therapy

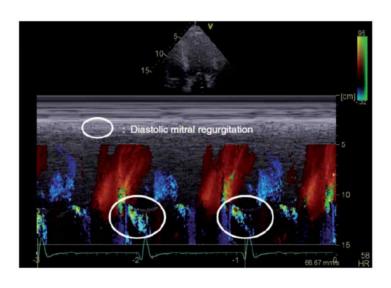
- Cumulative rates of appropriate ICD therapy for a ventricular arrhythmia increased over time in the group with EF>35% (7%, 9%, and 14% at 1,2, and 3 years → annual rate of 5%)
- Annual rate of 5% is in the range for which guidelines recommend ICD therapy for many conditions


Survival after CRT: results from 50,084 implantations

England Nationwide Cohort Undergoing CRT

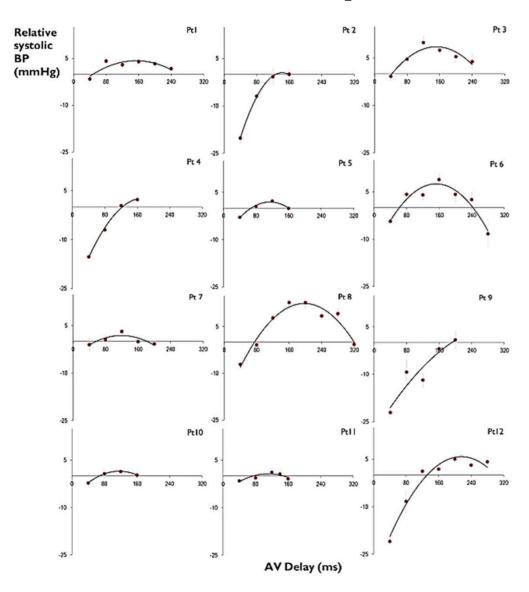
Survival after CRT: results from 50,084 implantations


Advantages of CRT over HBP


- Implantation success rate; particularly in anomalous structure or valve disease
- Stability of the Lead
- Concern for disease progression
 of conduction system
- Availability of defibrillator
- Automated optimization algorithm
- More data: more patients for longer duration

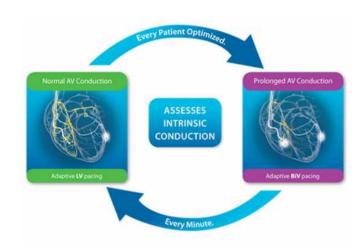
Hemodynamic implication of AV delay

- ✓ Prolonged AV delay → diastolic mitral regurgitation
- ✓ Shortened AV delay → fusion of E-and A- waves



Barold et al. Europace(2008);10 (suppl 3) 88-95

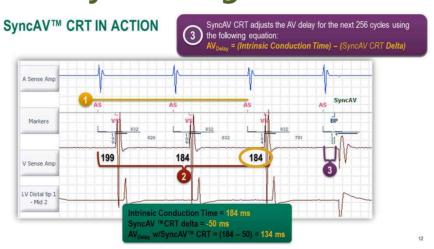
F.C.W.M. Salden et al. Europace(2018) 20, 1067-1077


Optimization of AV delay required for better performance of HBP

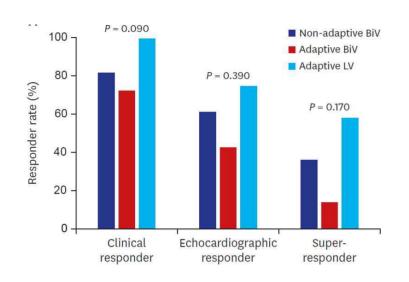
However,
No automatic algorithm in HBP device

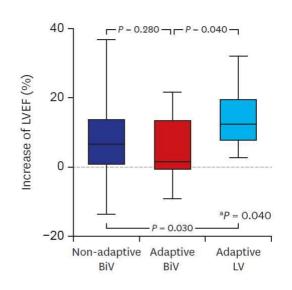
Jacc: Clinical Electrophysiology 2015; 1: 582-591

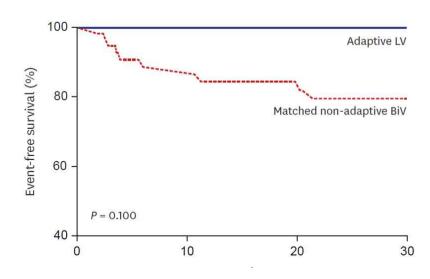
Automated optimization of AV & VV delay in CRT



Simultane ous
Biventricular
(Cor)
Senit = 0.89 g
Sequential Biv
20 ms (=7)
(Cor)
FRESSURE g

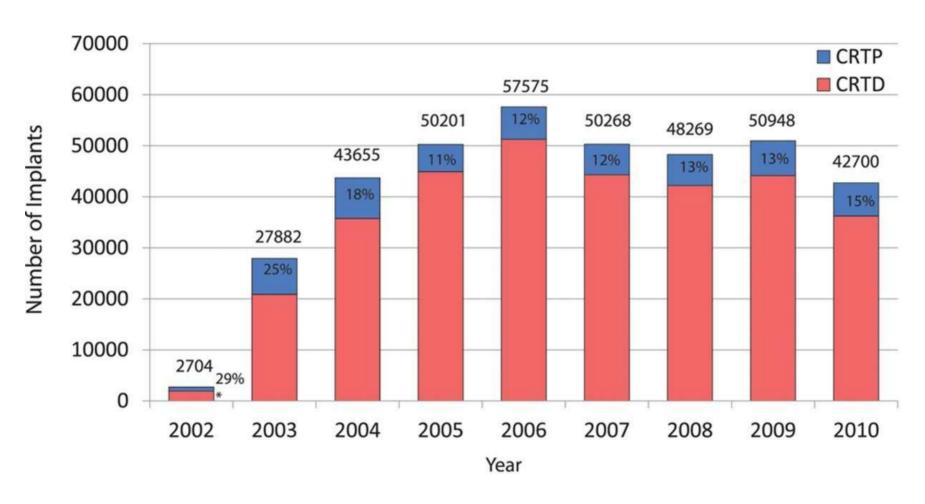

SonR PEA sensor


SyncAV algorithm


AdaptivCRT algorithm

CRT with automated optimization function

HB Gwag, SJ Park, et al.
J Korean Med Sci. 2019 Jul 15;34(27):e


Advantages of CRT over HBP

- Implantation success rate; particularly in anomalous structure or valve disease
- Stability of the Lead
- Concern for disease progression
 of conduction system
- Availability of defibrillator
- Automated optimization algorithm
- More data: more patients for longer duration

Data on HBP

Study	Number of Patients, n	, , ,			Notes				
Cantu et al 2006 ²⁶	17	All pa	tients	(selective) (nonselective)	5 (29%) had EF <40%	All patients had suprahisian block			
Catanzariti et al 2006 ²⁸	24	(n=1,1)	156)	i5	13 (56%) reported	442 (200()			
Zanon et al 2006 ⁵⁰	26		''		26 (100%) reporte HF (+)	=442 (38%)			
Lustgarten et al 2010 ⁵³	10	10 (100)	10 (100)	1.3±0.9	10 (100%) reported to have heart failure	All patients had conventional CRT indications			
Kronborg et al 2011 ⁴¹	38	32 (84)	4 (13)	2.3±1.0 (selective)	32 (100%) reported to have EF >40%	All patients had suprahisian block			
				1.5±1.2 (non-selective)					
Zanon et al 2011 ⁵⁴	307	Not known	87 (28)	2.5±2.3 (selective)	58 (19%) reported to have heart failure	All patients had suprahisian block			
				1.3±1.1 (nonselective)					
Lustgarten et al (2015) ⁴⁵	29	17 (59) achieved HBP with QRS r		3 to 4 (selective) 1 to 1.5 (nonselective)	21 (72%) reported to have cardiomyopathy	28 patients (97%) had left bundle branch block			
Sharma et al 2015 ³⁷	94	75 (80)	34 (45)	1.35±0.9	24 (32%) reported to have heart failure	44 (59%) had atrioventricular conducting system disease			
Vijayaraman et al 2015 ⁴⁴	100	84 (84)	22 (26)	1.4±1 V	Mean ejection fraction 54±10%	46 patients had atrioventricular nodal block, 54 patients had infranodal atrioventricular block			
Ajijola et al 2017 ⁴⁶	21	16 (76)	1 (6)	1.9±1.2 V at 0.6±0.2 ms	20 (95%) reported to have EF <35%	All patients reported to have an indication for CRT			
Huang et al 2017 ⁵²	52	42 (81)	38 (90)	1.5±1	42 (100%) reported to have heart failure	All patients had AF and underwent atrioventricular node ablation			
Sharma et al 2018 ⁴⁷	106	95 (90)	47 (50)	1.4±0.9 at 1 ms (His bundle capture) 2±1.2 at 1 ms (narrowing of BBB)	106 (100%) reported to have cardiomyopathy (LVEF 30+10% at baseline)	All patients had a CRT indication			
Abdelrahman et al 2018 ³⁹	332	304 (92)	115 (38)	1.30±0.85 at 0.79±0.26 ms	85 (26%) reported to have heart failure	Includes patients with wide range of pacemaker indications			

Data on CRT

US trends in CRT device implantation

Data on CRT

Country ISO code			CRT centres 2013	ntres 2013		Total CRT implantations 2013		Development potential—target number of CRT implantations		CRT implantations per mil inhabitants				
	Absolute number	Per mil inhabitants	CRT-P implantations Absolute number	CRT-D implantations Absolute number	Absolute number	Per mil inhabitants	To attain mean ESC area level	To attain mean EU-28 level	2009	2010	2011	2012		
Albania ^a	AL	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Algeria	DZ	8	0.21	31	33	64	2	2266	4155	N/A	N/A	N/A	N/A	2
Armenia	AM	2	0.65	0	10	10	3	182	334	3	2	3	6	3
Austria	AT	18	2.19	281	897	1178	143	-	-	113	119	117	107	143
Azerbaijan	AZ	2	0.21	0	17	17	2	570	1046	N/A	2	2	N/A	2
Belarus ^b	BY	5	0.52	N/A	N/A	54	6	573	1050	5	4	5	4	6
Belgium	BE	35	3.35	397	824	1221	117	-	-	N/A	49	58	77	117
Spain	ES	130	2.74	857	1688	2545	54	2818	5168	41	41	56	53	54
Sweden	SE	N/A	N/A	431	536	967	100	_	1052	84	81	N/A	49	100
Switzerland	CH	31	3.88	157	320	477	60	-	872	70	73	74	66	60
Syria ^a	SY	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tunisia ^a	TN	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	8	8	23	N/A
Turkeya	TR	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Jkraine	UA	13	0.29	67	22	89	2	2652	4863	N/A	1	1	1	2
United	GB	109	1.72	3792	3970	7762	122	_	_	95	105	105	110	122

Statistics on the use of CRT: report from the EHRA

^{*}These 10 countries did not submit data on CRT implantations in 2013.

^bBelarus, and Cyprus reported only total CRT implantation numbers and Germany only the numbers for CRT-D implantations.

Summary

- CRT, higher success rate of implantation no concern for disease progression of conduction system
- Defibrillator can be adopted into CRT
- Automated optimization algorithm in CRT
- CRT, more data in more patients for longer period

경청해 주셔서 감사합니다