Role of Entrainment in the Era of High-Density Activation Mapping

Pasquale Santangeli MD PhD
University of Pennsylvania Health System
Philadelphia, PA
Presenter Disclosure Information

Within the past 12 months, the presenter has received financial support from the organizations identified below for the relationships listed.

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biosense Webster</td>
<td>Consultant / Lecture Honorarium</td>
</tr>
<tr>
<td>Baylis Medical</td>
<td>Consultant / Lecture Honorarium</td>
</tr>
<tr>
<td>Boston Scientific</td>
<td>Consultant / Lecture Honorarium</td>
</tr>
<tr>
<td>St. Jude Medical</td>
<td>Consultant</td>
</tr>
<tr>
<td>Stereotaxis</td>
<td>Consultant / Lecture Honorarium</td>
</tr>
<tr>
<td>Abiomed</td>
<td>Consultant</td>
</tr>
</tbody>
</table>

No organization has prepared, altered or influenced content of any lecture material
What is the Holy Grail for VT Ablation?

0.03-0.8 mV
What is the Holy Grail for VT Ablation?
What is the Holy Grail for VT Ablation?
76 consecutive patients with well-tolerated VT

- 64/76 mappable VT
- 12/76 with only unmappable VT
 - 44/64 also had unmappable VT
 - 74%: At least 1 unmappable VT

ThermoCool VT Ablation Trial (231 pts)

- 31%: only mappable VT
- 69% at least 1 unmappable VT
 - 54% VTs unmappable
 - 22% non-inducible/changing
 - 78% unstable hemodynamics

Callans et al. AJC 1998;82:429-432
Stevenson et al. Circulation 2008;118:2773-2782
Ability to Map VT
Arrhythmia Specific and Patient Specific Factors

2,063 patients with scar-related VT

<table>
<thead>
<tr>
<th>PAINESD RISK SCORE</th>
<th>VARIABLE</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary disease [COPD]</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Age >60 years</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Anesthesia [general]</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Ischemic cardiomyopathy</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>NYHA class III or IV</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Ejection fraction <25%</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Storm [VT]</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Acute Hemodynamic Decompensation (AHD)*

*Sustained hypotension (SBP<80-90 mmHg) despite increasing doses of vasopressors and requiring mechanical hemodynamic support or procedure discontinuation.

Santangeli et al. JACC 2017;69:2105-2115
Santangeli et al. Circulation A&E 2015;8:68-75
Mappable VTs – Preferred Strategy?

High-Density Activation Mapping vs. Entrainment Mapping

- 62 yo M h/o CAD (inferior MI), HTN, mild CKD.
- 8 ICD shocks – incessant stable MMVT at 140 bpm.
- TTE: Severe LV dysfunction (EF = 35%), inferior-lateral akinesis.
- SPECT: Large fixed defect in the inferior-lateral wall base to apex. EF = 30%.
Substrate

0.03-0.8 mV

12-Lead ECG of VT
High-Density Activation Map

Infero-lateral wall

Mitral valve

Infero-septal wall
Where Would You Ablate?

- Site #1
- Site #2
- Site #3
- Site #4

Voltage Scale 0.03 to 0.5 mV
High-Density Activation Map vs. Entrainment
Critical Site of VT Termination
Visual Reentry Can Be Passive
15 pts w/ 27 RA reentrant circuits
Visual Reentry Can Be Passive

None of the entrainment runs resulted in termination of AT or change to a different AT

Pathik et al. Heart Rhythm 2017;14:1541-49
Activation Mapping to Define VT Mechanism?

42 yo F w/ ARVC and Incessant VT
Quick Definition of VT Mechanism w/ Pacing

42 yo F w/ ARVC and Incessant VT
Unequivocal Definition of Critical Diastolic Components w/ Entrainment
Unequivocal Definition of Critical Diastolic Components w/ Entrainment
High-Density Activation Mapping

Limitations

• Highly dependent on sampling bias (full chamber/cycle length needs to be represented)
• Unable to reliably differentiate passive diastolic activity from diastolic activity participating to VT.
• Unable to differentiate true reentry from focal origin adjacent to a line of block (anatomical or functional).
• Only adequate to define circuits when reentry is confined within a fully mappable chamber/structure (2-D/surface reentry).
Reentry *Is Not* Necessarily Confined to Mappable Surface

52 yo M with Antero-Lateral MI

Courtesy of Drs. Paolo Della Bella and Caterina Bisceglia
Entrainment Mapping *Is Not* Perfect!

- Unable to reliably capture with a fixed relationship of stimulus to EGMs.
- Non-local recording and non-local stimulation – particularly with large interelectrode distance and/or large tip electrode.
- Contact with tissue generating signal.
- Obscuring EGM by pacing artifact.
- Termination/change during pacing.
- High current produces non-local stimulation (enlarged virtual electrode).
Failure to Capture
Need **Perfect ECG Match** – **RF Failed to Terminate**
Good Entrainment Map – 12/12 Perfect Match

420 ms 420 ms 450 ms 450 ms
Good Entrainment Map – $PPI-TCL=0$
Failure to Terminate VT at a Single Site Despite *Apparent* Perfect Entrainment Map

- Inadequate map
- Inadequate lesion
 - Clot/Fat/Scar
 - Deep location of VT (intramural)
 - Width of isthmus exceeds RF point lesion
Conclusions

- When a stable monomorphic VTs is present use of responses to pacing, based on *physiologic principles*, can define critical sites in the circuit (i.e. a protected isthmus).

- Although high-density activation mapping may be helpful to identify reentrant excitation and *visually define* regions of diastolic activity, it is unnecessary (and possibly misleading) in identifying critical diastolic sites at which RF lesions can terminate VT.