Lead Extraction: Technique and Complication

Sang-Weon Park M.D.
Lead extraction

As it grows the number of cardiac implantable electronic device implantation, the necessity of lead extraction also grows

- Infection
- Chronic pain
- Thrombosis and vein steno
- Non Functional lead
Figure 1: Timeline of Advances in Lead Extraction

- Buck’s traction
- Basket extraction
- Snare extraction
- Forceps extraction
- Locking stylet
- Telescoping sheath
- Limited atriotomy
- Excimer laser
- Electrosurgical Dissection Sheath
- Evolution

1960 - Simple/weighted traction
1970 - Countertraction sheaths
1980 - Surgical extraction
1990 - 2000 - 2010
Lead Extraction

- Weight and pulley system
- Direct manual traction
- Trans-venous removal by counter-traction technique
- Surgery
Trans-venous approach -procedural step

- Lead preparation
- Gentle manual traction with stylet
- Telescoping Sheath application
Stylet insertion is very important step

- Stylets increase the tensile strength of the leads

<table>
<thead>
<tr>
<th></th>
<th>Locking Stylet</th>
<th>Standard Stylet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traction allowed</td>
<td>stronger</td>
<td>moderate</td>
</tr>
<tr>
<td>Traction</td>
<td>Localized to the tip</td>
<td>Not localized</td>
</tr>
<tr>
<td>removable</td>
<td>Not always</td>
<td>always</td>
</tr>
<tr>
<td>Cross-over to alternative approach</td>
<td>Difficult</td>
<td>simple</td>
</tr>
</tbody>
</table>
Telescoping sheath application

Gently push down the lead with rotation

Stay within line during sheath advancement
Causes of standard technique’s failure

• Narrow costo-clavicular space
• Tightness of binding sites at various sites
 • SVC
 • RA
 • Tricuspid valve
 • ventricle
The Pisa approach
My Experiences

• From 2012 to 2018, we conducted lead extraction for 52 patients. (M:F=35:17, mean age 63.4 [14-88] y.o.).

• There were 36 cases of lead failure and 16 cases of device infection including persistent occult gram-positive bacteremia.
Results

• Lead removal by manual traction was 21 cases.

• 20 cases were done by using telescoping sheath and locking stylet at ipsilateral site of device implantation. By this method 1 case of lead avulsion and fracture at SVC-RA junction occurred.

• 9 cases were done by trans-jugular approach without locking stylet after failure of advance of telescoping sheath beyond RA site.
M/67
C/C: inappropriate ICD shock due to lead failure
venogram
Advance of telescoping sheath with rotation
Advance...
Failure of Advance of sheath beyond TV
Femoral approach for lead release
Trans-jugular catch of the lead using snare (11Fr sheath)
Telescoping sheath again from jugular approach
Advance of sheath to the RV
Additional femoral approach using snare and deflectable catheter
Results

• All of our case was done without serious complication.
Complications of lead extraction

<table>
<thead>
<tr>
<th>Major Event</th>
<th>2017 HRS expert consensus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>0.19%–1.80%</td>
</tr>
<tr>
<td>Cardiac avulsion</td>
<td>0.19%–1.20%</td>
</tr>
<tr>
<td>Vascular laceration</td>
<td>0.19%–0.96%</td>
</tr>
<tr>
<td>Respiratory arrest</td>
<td>0.16%–0.41%</td>
</tr>
<tr>
<td>Cerebrovascular accident</td>
<td>0.20%</td>
</tr>
<tr>
<td>Pericardial effusion requiring intervention</td>
<td>0.07%–0.08%</td>
</tr>
<tr>
<td>Hemothorax requiring intervention</td>
<td>0.23%–0.59%</td>
</tr>
<tr>
<td>Cardiac arrest</td>
<td>0.07%</td>
</tr>
<tr>
<td>Thromboembolism requiring intervention</td>
<td>0.07%</td>
</tr>
<tr>
<td>Flail tricuspid valve leaflet requiring intervention</td>
<td>0.03%</td>
</tr>
<tr>
<td>Massive pulmonary embolism</td>
<td>0.08%</td>
</tr>
</tbody>
</table>
Complications of lead extraction

<table>
<thead>
<tr>
<th>Minor</th>
<th>Publication References</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pericardial effusion without intervention</td>
<td>62, 210, 245, 246, 282</td>
<td>0.60%–6.20%</td>
</tr>
<tr>
<td>Hematoma requiring evacuation</td>
<td>62, 210, 282</td>
<td>0.07%–0.16%</td>
</tr>
<tr>
<td>Venous thrombosis requiring medical intervention</td>
<td>62, 210</td>
<td>0.90%–1.60%</td>
</tr>
<tr>
<td>Vascular repair at venous entry site</td>
<td>62, 210, 245</td>
<td>0.10%–0.21%</td>
</tr>
<tr>
<td>Migrated lead fragment without sequelae</td>
<td>62</td>
<td>0.07%–0.13%</td>
</tr>
<tr>
<td>Bleeding requiring blood transfusion</td>
<td>62, 245, 282</td>
<td>0.20%</td>
</tr>
<tr>
<td>AV fistula requiring intervention</td>
<td>62</td>
<td>0.08%–1.00%</td>
</tr>
<tr>
<td>Coronary sinus dissection</td>
<td>62</td>
<td>0.16%</td>
</tr>
<tr>
<td>Pneumothorax requiring chest tube</td>
<td>282</td>
<td>0.13%</td>
</tr>
<tr>
<td>Worsening tricuspid valve function</td>
<td>282</td>
<td>1.10%</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>245</td>
<td>0.32%–0.59%</td>
</tr>
</tbody>
</table>

2017 HRS expert consensus
Central venous vascular tears constitute the potentially most lethal complication encountered during cardiac-implantable electronic device lead extraction.

Historically, the case fatality rate of these events has been 50% due to blood loss prior to getting the patient into an operating room and opening them up for surgical repair.
Conclusion

• Currently, lead extraction was done with limited availability of tools in Korea.
 (only telescoping dilator sheath and locking stylet)
• A lot of lead extraction could be done by simple traction with simple stylet. But minimal back up extraction tool is necessary for doing lead extraction.
• Additional femoral and jugular approach is necessary for difficult case.
• Surgical back up is must and bridge balloon is helpful for life saving.