Programming of ICD to Reduce Shocks

2017.6.23
중앙보훈병원 순환기내과
이우석
37 years ago...

TERMINATION OF MALIGNANT VENTRICULAR ARRHYTHMIAS WITH AN IMPLANTED AUTOMATIC DEFIBRILLATOR IN HUMAN BEINGS

Reductions in Mortality with ICDs

Does ICD Therapy = A Life-Saving Event?

Marked Over-Treatment in Primary and Secondary Prevention Patients

1. Overtreatment in Secondary Prevention
 - AVID 2 year follow-up
 - Control: SCD/Cardiac Arrest/Sustained VT
 - ICD Therapy
 - 10.20% vs. 68% (6.6X)

2. Overtreatment in Primary Prevention
 - MUSTT
 - Annual Rate of Sudden Death
 - Non-ICD: 4.6 vs. ICD: 2.7X
 - SCD-HeFT
 - Annual Rate of Sudden Death
 - Non-ICD: 2.8 vs. ICD: 5.7X
 - 5 yr 60% VT/VF shocks
 - 5 yr 37% SCD

3. References
Prognostic Importance of ICD Shocks

- SCD-HeFT patients who received and ICD (n=811)
- 33.2% received shocks: 15.8% only appropriate, 10.7% only inappropriate and 6.7% both
- Patients who receive shocks for any arrhythmia have a higher risk of death than those who do not receive such shocks

<table>
<thead>
<tr>
<th>Shock Type</th>
<th>Hazard Ratio for Death (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥1 App vs. no App</td>
<td> 5.68 (3.97–8.12)</td>
<td><0.001</td>
</tr>
<tr>
<td>≥1 Inapp vs. no Inapp</td>
<td> 1.98 (1.29–3.05)</td>
<td>0.002</td>
</tr>
<tr>
<td>Both shock types vs. no shock</td>
<td> 11.27 (6.70–18.94)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Shocks but not ATP are associated with Higher Mortality

- Retrospective analysis of pooled data
 - PainFREE I and II, EMPIRIC and PREPARE
 - 2,135 pts, EF 31%, 87% CAD, 55% NYHA II/III, 42% NYHA I/ no CHF

Sweeney M. Heart Rhythm 2010; 7: 353 - 360
The Arrhythmia or Comorbidities rather than the Shock itself

- Survival After Shock Therapy according to rhythm shocked
 - Ventricular rhythms and atrial fibrillation: increased risk of death
 - Inappropriate shocks for ST/noise/artifact/oversensing: no difference

![Graph showing survival rates](image)

<table>
<thead>
<tr>
<th>Variable</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVT and PMVT</td>
<td>2.77</td>
<td>(1.70 - 4.51)</td>
</tr>
<tr>
<td>NSVT</td>
<td>2.17</td>
<td>(0.82 - 5.70)</td>
</tr>
<tr>
<td>VF/PMVT</td>
<td>2.10</td>
<td>(1.54 - 2.86)</td>
</tr>
<tr>
<td>MVT</td>
<td>1.65</td>
<td>(1.36 - 2.01)</td>
</tr>
<tr>
<td>Atrial fibrillation/flutter</td>
<td>1.61</td>
<td>(1.17 - 2.21)</td>
</tr>
<tr>
<td>Sinus tachycardia/VT</td>
<td>0.97</td>
<td>(0.68 - 1.37)</td>
</tr>
<tr>
<td>Noise/artifact/oversensing</td>
<td>0.91</td>
<td>(0.50 - 1.67)</td>
</tr>
</tbody>
</table>

Powell BD. *J Am Coll Cardiol* 2013; 62: 1674 - 1679
Avoiding Shocks is important

To Reduce Pain and Anxiety and Increase Device Acceptance

To Reduce Healthcare Burden and Improve Patient Quality of Life

Avoiding Shocks May Improve Survival/Heart Failure

Wathen MS. *Circulation*. 2004;110:2591-2596

ICD Careless Shock Costs Lives!!
Approach to Patient with ICD Shocks

1. Analyze stored and clinical data

 - Tachyarrhythmia
 - SVT (Inappropriate detection)
 - VT/VF (Appropriate detection)
 - Shock unnecessary
 - Shock necessary
 - No Tachyarrhythmia (Oversensing)
 - Intracardiac signals
 - Extracardiac signals
ICD Therapy: different types of shocks

- **Necessary (Appropriate) shocks:**
 - Shocks triggered by potentially life-threatening ventricular arrhythmias
 - Necessary shocks: Shock for arrhythmias not terminated by other means including ATP

- **Unnecessary (Avoidable) shocks:**
 - Other painless therapy can be used to terminate arrhythmia
 - Self-terminating non-sustained VT
 - Slow VT – no require therapy

- **Inappropriate Shocks:** Shocks triggered by an inappropriate detection
 - Non-VT arrhythmia
 - Intrinsic and/or extrinsic signal oversensing
 - Device and/or lead malfunction

Koneru JN. Circ Arrhythm Electrophysiol. 2011;4:778-790
Schoels W. Heart Rhythm. 2007;4:879-885
Principle Programming Goals

• Pharmacological treatment and/or catheter ablation
• Treat VT with antitachycardia pacing
• Prevent detection of Nonsustained VT
• Optimize SVT-VT discrimination
• Prevent oversensing
General Measures

- Avoidance of aggravating factors
 - Preventing electrolyte abnormalities
 - Sleep deprivation
 - Caffeine, alcohol
 - Over-the-counter medications
 - Herbal remedies (eg, gingko, ephedra, ginseng, guarana, and yohimbine)
 - Cardiac stimulants (eg, theophylline, cocaine, and amphetamines)

- Underlying heart disease on optimal medical Tx.
Optimal Pharmacologic Therapy in Cardioverter Defibrillator Patients

- OPTIC Study
- Amiodarone plus β-blocker significantly reduced the risk of shock compared with β-blocker alone
 - 38.5% (β-blocker) vs. 24.3% (Sotalol) vs. 10.3% (Amiodarone plus β-blocker)
Catheter Ablation for Electrical Storm

- CA failure (C) (HR, 15.23; 95% CI, 2.0 to 112.8; $P=0.008$) vs. CA success (A) or partial success (B)

Carbucicchio C. Circulation 2008;117:462-469
Reducing unnecessary shocks and inappropriate shocks
Sequence of Event leading to Therapy

Heart rate threshold

Duration/no. intervals

SVT-VT Discriminators

ATP

Tachydetected

VT/VF detected

Charge

Shock

Ignore slow rhythms (VT, SVT)

Ignore non-sustained

Ignore SVT

• Terminate VT
• Allow time→self-term
• Terminate some SVT

Morphology
• onset, stability, other logic
• Single/dual chamber

**Reconfirmation
++Reduction

Cardiac Pacing, Defibrillation and Resynchronization (Third Edition)
Ventricular Rate Precipitating Inappropriate Shock

MADIT II study

PROVIDE study

Daubert JP. J Am Coll Cardiol. 2008;51:1357-1365
Tachyarrhythmia Cycle Length in Appropriate versus Inappropriate Defibrillator Shocks

- Brugada Syndrome, Early Repolarization Syndrome, or Idiopathic Ventricular Fibrillation
- 235ms/255bpm (sensitivity 98.4%, specificity 95.6%)
- Safety problem 4.4%
- 270ms/222bpm (inappropriate shock 70.5% reduction)

Higher Rate Cutoffs

MADIT-RIT trial (primary prevention)

<table>
<thead>
<tr>
<th>Zone 1 ≥ 170 BPM</th>
<th>Zone 2 ≥ 200 BPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional ATP + shock</td>
<td>shock</td>
</tr>
<tr>
<td>High-rate Monitor only</td>
<td>shock</td>
</tr>
</tbody>
</table>

Inappropriate shock

Cumulative Probability of First Occurrence of Inappropriate Therapy

Unadjusted P<0.001

Mortality

Cumulative Probability of Death

Unadjusted P=0.03

6.6% vs. 3.2%, p=0.01

Lots of Data and Experience Now Suggest
2015 HRS/EHRA/APHRS/SOLAECE Expert Consensus

Slowest Tachycardia Therapy Zone Limit
(185 to 200 bpm)

Prolonged Detection
(At least 6-12 seconds or for 30 intervals)

Discrimination algorithms to distinguish SVT for VT
(faster than 200 bpm and potentially up to 230 bpm)

Use of ATP
(At least 1 ATP, up to 230 bpm, A minimum of 8 stimuli,
Burst, 84%-88% of TCL)

Reduced Shocks in ICD patients
Strategic Programming Reduces Shocks

- PREPARE: Prospective, cohort controlled study (MIRACLE ICD, EMPIRIC trial – NID 12/16, 18/24)
- 700 primary prevention ICD or CRT-D patients programmed to **A**TP **f**or fast **VT** (182-250 bpm), **NID 30/40**, VT monitor (<182 bpm)
- Reduction of unnecessary and inappropriate shocks, improved survival

Wilkoff BL. J Am Coll Cardiol 2008; 52: 541-550
CRT-D with NID programmed to 30/40

- RELEVANT: 324 primary prevention pts. with non-ischemic etiology with CRT-D programmed to: **NID 30/40 or 12/16 (control)**
- Study arm showed:
 - Better event-free survival to first delivered therapy for total, appropriate and inappropriate episodes
 - Lower total number of delivered shocks
 - Reduced HF hospitalization

Gasparini M. *Eur Heart J* 2009; 30(22): 2758-2767
As many arrhythmias would terminate without therapy, this programming strategy resulted in a 50% reduction in inappropriate ICD therapies.

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants (N)</th>
<th>Short detection controls</th>
<th>Prolonged detection intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>MADIT-RIT</td>
<td>1500</td>
<td>2.5 s (170–199 bpm)</td>
<td>60 s (170–199 bpm)</td>
</tr>
<tr>
<td></td>
<td>Randomized</td>
<td>1 s (≥200 bpm)</td>
<td>12 s (200–249 bpm)</td>
</tr>
<tr>
<td></td>
<td>Primary prevention</td>
<td>2.5 s (≥250 bpm)</td>
<td>2.5 s (≥250 bpm)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Conventional Therapy (N = 514)</th>
<th>High-Rate Therapy (N = 500)</th>
<th>Delayed Therapy (N = 486)</th>
<th>P Value for High-Rate Therapy vs. Conventional Therapy</th>
<th>P Value for Delayed Therapy vs. Conventional Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appropriate therapy</td>
<td>517</td>
<td>185</td>
<td>196</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Shock</td>
<td>71</td>
<td>72</td>
<td>53</td>
<td>0.35</td>
<td>0.15</td>
</tr>
<tr>
<td>Antitachycardia pacing</td>
<td>446</td>
<td>113</td>
<td>143</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Inappropriate therapy</td>
<td>998</td>
<td>75</td>
<td>264</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Shock</td>
<td>105</td>
<td>25</td>
<td>49</td>
<td>0.001</td>
<td>0.16</td>
</tr>
<tr>
<td>Antitachycardia pacing</td>
<td>893</td>
<td>50</td>
<td>215</td>
<td><0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Long detection programming
ADVANCE III trial

- VVI ICDs: 545 pts. With ICMP & NICMP, ICD programmed to: NID 30/40 or 18/24 (control)
- Study arm showed:
 - Reduced overall shock by 40%, appropriate shock by 51%
 - Reduced all-cause mortality

Gasparini M. JACC: Clinical Electrophysiology 2017 (2017 HRS late breaking)
Completely asymptomatic patient. Seen for routine follow-up.
Lots of Data and Experience Now Suggest
2015 HRS/EHRA/APHRS/SOLAECE Expert Consensus

Slowest Tachycardia Therapy Zone Limit
(185 to 200 bpm)

Prolonged Detection
(At least 6-12 seconds or for 30 intervals)

Discrimination algorithms to distinguish SVT for VT
(faster than 200 bpm and potentially up to 230 bpm)

Use of ATP
(At least 1 ATP, up to 230 bpm, A minimum of 8 stimuli,
Burst, 84%-88% of TCL)

Reduced Shocks in ICD patients
Causes of Inappropriate ICD Therapy
The ALTITUDE REDUCES Study

Benefit of SVT-VT discrimination

Fischer A. Heart Rhythm. 2012;9:24-31
Enhanced Detection Criteria

SVT versus VT

- **Sudden Onset → Activate!**
 - Discriminates *sinus tachycardia* from VT

- **Stability → Activate!**
 - Discriminates *atrial fibrillation* from VT

- **Ventricular EGM Morphology → Activate if it works!**
 - Cave: SVT with aberrancy

- **Sustained Rate Duration → Deactivate (or ≥ 5 min)!**

- **Activate up to ≥ 200 bpm**
Method for analysis in Dual and single chamber ICD

A Dual Chamber

- Analyze atrial and ventricular rates
 - A > V
 - Ventricular morphology
 - Ventricular interval stability
 - AV association
 - Conducted AFib/AFlu
 - VT + AFib/AFlu
 - A = V
 - Ventricular morphology
 - AV interval
 - Chamber of onset
 - Response to ATP*
 - SVT (1:1 AV conduction)
 - VT (1:1 VA conduction)
 - V > A
 - VT

B Single Chamber

- Ventricular electrogram morphology
 - Uniform and identical to sinus morphology
 - SVT
 - Variable or minimal difference from sinus morphology
 - • Abrupt onset → VT*
 - • Irregularly irregular → AFib
 - Uniform and distinctly different from sinus morphology
 - VT
SVT limit

 - The safety of empirical programming at 200 bpm

- **MADIT II (2008)**
 - Approximately 50% of SVT > 170 bpm

- **INTRINSIC RV (2012)**
 - SVT (19% - 200 to 250 bpm)

- **PainFree SST (2015)**
 - Up to 222-230 bpm
Choosing Single or Dual-Chamber ICDs

SVT versus VT

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>Dual-chamber n/N</th>
<th>Single-chamber n/N</th>
<th>OR (fixed) 95% CI</th>
<th>Weight %</th>
<th>OR (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+1 Trial</td>
<td>39/375</td>
<td>59/289</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PINAPPS</td>
<td>32/145</td>
<td>28/117</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detect SVT</td>
<td>196/750</td>
<td>175/531</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>1270</td>
<td>937</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total events: 257 (Dual-chamber), 262 (Single-chamber)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: Chi² = 3.89, df = 2 (P = 0.14), I² = 48.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 4.38 (P < 0.0001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Theuns DA. Int J Cardiol. 2008;125:352-357

Randomized study

<table>
<thead>
<tr>
<th>Study</th>
<th>Relative Risk (95% CI)</th>
<th>Weight %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theuns et al. 2004</td>
<td>1.09 (0.42, 2.87)</td>
<td>29.89</td>
</tr>
<tr>
<td>Friedman et al. 2006</td>
<td>1.06 (0.73, 1.56)</td>
<td>46.38</td>
</tr>
<tr>
<td>Almendral et al. 2008</td>
<td>0.23 (0.07, 0.78)</td>
<td>23.72</td>
</tr>
<tr>
<td>Overall (I²-squared = 65.2%, p = 0.057)</td>
<td>0.74 (0.33, 1.68)</td>
<td>100.00</td>
</tr>
<tr>
<td>Combined effect: p = 0.48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Weights are from random effects analysis

Lots of Data and Experience Now Suggest
2015 HRS/EHRA/APHRS/SOLAECE Expert Consensus

Slowest Tachycardia Therapy Zone Limit
(185 to 200 bpm)

Prolonged Detection
(At least 6-12 seconds or for 30 intervals)

Discrimination algorithms to distinguish SVT for VT
(faster than 200 bpm and potentially up to 230 bpm)

Use of ATP
(At least 1 ATP, up to 230 bpm, A minimum of 8 stimuli,
Burst, 84%-88% of TCL)

Reduced Shocks in ICD patients
ATP for Fast VTs Reduces Shocks II

- PainFREE Rx II: 634 prim./sec. prevention ICD pts. randomized to empirical ATP or shock for fast VTs (188-250 bpm), NID 18/24
- ATP successfully terminated 3 out of 4 Fast VTs
- ATP is highly effective, equally safe and improves QoL

ATP Arm
- n=284 episodes
- ATP success 72%
- ATP failed 28%

Shock Arm
- n=147 episodes
- Shocked 64%
- Spontaneous Termination 34%
- ATP 2%

Wathen MS. *Circulation* 2004; 110: 2591-2596
ATP in the Fast VT Zone

2 bursts (5 + 8 pulses at 84% of VT CL) followed by max. shock → max. shock alone

→ programming 2 ATPs in the Fast VT zone reduces the proportion of patients with shocks in the FVT zone by 73%

Martinez-Sanchez. J Am Coll Cardiol. 2005;45:460-469
Lots of Data and Experience Now Suggest
2015 HRS/EHRA/APHRS/SOLAECE Expert Consensus

Slowest Tachycardia Therapy Zone Limit
(185 to 200 bpm)

Prolonged Detection
(At least 6-12 seconds or for 30 intervals)

Discrimination algorithms to distinguish SVT for VT
(faster than 200 bpm and potentially up to 230 bpm)

Use of ATP
(At least 1 ATP, up to 230 bpm, A minimum of 8 stimuli,
Burst, 84%-88% of TCL)

Reduced Shocks in ICD patients
Ventricular Oversensing

- Non-arrhythmic (noise, artifact, oversensing)

<table>
<thead>
<tr>
<th>Intracardiac signal</th>
<th>Physiologic</th>
<th>Non-Physiologic</th>
</tr>
</thead>
<tbody>
<tr>
<td>T wave oversensing</td>
<td>Lead failure</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extracardiac signal</th>
<th>Myopotentials</th>
<th>EMI</th>
<th>Lead-Connector</th>
</tr>
</thead>
</table>
Ventricular Oversensing

P-wave oversensing

R-wave double counting

T-wave oversensing

EMI

Myopotential

Lead Fracture

Swerdlow CD. PACE. 2005;28:1322-1346
T-wave Oversensing

- The commonest cause of ventricular oversensing
- Approximately 6% of shocks in SCD-HeFT were due to TWOS.
Avoid T Wave Oversensing

- Large R waves at implantation
- Minimum Sensing Threshold (0.4 mV → 0.6 mV)
- Filtering
- Dedicated programming options

Decay delay

Threshold start
To Minimize T-Wave Oversensing

<table>
<thead>
<tr>
<th>Concept</th>
<th>Algorithmic/T-wave Derivative</th>
<th>Altered Sensing Vector</th>
<th>Signal Filtering</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONCEPT</td>
<td>Differentiation of sense EGM enlarges R-wave to T-wave amplitude ratio</td>
<td>Integrated bipolar electrograms often have a larger R-T wave ratio</td>
<td>A high pass filter will remove more T-wave than R-wave energy</td>
</tr>
</tbody>
</table>

Before

- RV tip to RV ring EGM
- Filtered & Rectified EGM

After

- Differential EGM
Reducing Shocks Due to RV Lead Noise
(Lead and connection problems)

- Cumulative lead malfunction incidence is 4.6% at 10 years across manufacturers
- Lead malfunction resulted in inappropriate shocks in 76% of the cases
- Indicating failure of the integrity of the ICD system and usually requires system revision
- Connection (header, adapter, or setscrew) problems, lead insulation failure, conductor fracture
- Intermittent “noise”

Lead and Connector Noise

- High-frequency components typically result in intervals within 20ms of the ventricular blanking period (130-150ms) and many intervals below 200ms.
- Substantial variability in amplitude or frequency occurs.
- High-amplitude signals saturate the amplifier.
- The noise signal is limited to the sensing electrogram unless the problem relates to the RV coil in an integrated bipolar lead or to both sensing and high-voltage conductors or connectors.
RV Lead Noise Discrimination

- Lead-noise oversensing is typically isolated to the near field sensing signal
- Compare near-field sensing signal:
 - Far field EGM used to confirm senses

Swerdlow CD. Circ Arrhythm Electrophysiol. 2014;7:1237-1261

Compares far-field cardiac activity to sensed event
Operation of RV Lead Integrity Alert

- **Abrupt ↑ Impedance**: Specific
- **SIC ≤130 ms >30 in 3 days**: Sensitive
- **2 NST <220 ms in 60 days**: Moderately specific

Response: Automatic Δ VF Detection

Participants:
- Patients
- Clinicians

Δ NID Δ to 30/40

Swerdlow CD. Circ Arrhythm Electrophysiol. 2014;7:1237-1261
Summary
Safe Shock Reduction Strategies

Summary

Combined approach to reduce all types of unnecessary shocks:

1. Higher rate cutoffs (200 BPM)
2. Longer detection time (at least 6-12 seconds or for 30 intervals)
3. Multi-detection zone
4. SVT discrimination algorithms (200 BPM, upto 230 BPM)
5. T wave oversensing algorithm
6. Lead noise algorithm
7. Burst ATP (minimum 8 stimuli) to a cycle length of 240ms
Thank you for your attention.