Effectiveness of atrial fibrillation rotor ablation is dependent on conduction velocity: An in-silico 3-dimensional modeling study

Byoung-hyun Lim¹, Minki Hwang¹, Jun-Seop Song¹, Ah-Jin Ryu², Eun Bo Shim², and Hui-Nam Pak¹

¹Yonsei University Health System, Seoul, Republic of Korea
²Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Ganwon-do, Republic of Korea
Previous study:
Stable rotors are observed in *in-silico* human atrial fibrillation (AF) models, and are well represented by a dominant frequency (DF).

Current study:
We hypothesized that the outcome of DF ablation is affected by conduction velocity (CV) conditions and examined this hypothesis using *in-silico* 3D-AF modeling.
CONFIRM trial (Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation).
The recent RADAR-AF trial failed to prove the superiority of DF-guided ablation outcomes compared to those of CPVI ablation, and AF termination rates with DF-guided ablation were very low in clinical conditions.

* RADAR–AF, Radiofrequency Ablation of Drivers of Atrial Fibrillation
Wave Dynamics in Simulation

A. Wave dynamics in 2D

- PeAF
- PS
- DF
- ShEn
- CFAE

B. Wave dynamics in 3D

C. Various virtual ablation in 3D

The Highest 5% DF Ablation:

70% defragmentation of AF

M. Hwang et al., PLoS One, 2016
Spatiotemporal Change of DF Area

A. T1 (5~11sec)

B. T2 (35~41sec)

C. T3 (65~71sec)

D. T4 (95~101sec)

E. T5 (125~131.sec)

F. T6 (155~161sec)

G. T7 (185~191sec)

H. T8 (215~221sec)

I. T9 (245~251sec)

Hypotheses

- Does rotor ablation terminate or defragmentate AF?
- Is target rotor spatiotemporally stable and consistent?
- Which condition does determine rotor dynamics?
Method

3D Left atrial (LA) Modeling

- Patient's CT images are merged.

 (10 persistent AF, 61.8±13.5 years)

- 3D mesh generation by
 the customized software (CUVIA).

- Based ionic currents: **Courtemanche model**.

- Our modified ion currents 1,2:

 - $0.8 \times I_{to}$
 - $0.5 \times I_{kur}$
 - $0.4 \times I_{CaL}$
 - $1.5 \times I_{K1}$

Method: Analysis algorithm

- Ramp pacing (200, 190, 180ms / 8회)
- AF induction 시간: max 300초
- DF analysis (6s): spatiotemporal stability of DF (mean variance)
- PS analysis (6s): 1ms당 출현하는 PS 개수, Longest PS life span
- DF ablation after DF analysis.
Result: Spatiotemporal stability of DF

A. Spatiotemporal mean variance of regional proportion of the 10% highest DF area

B. Spatiotemporal mean variance of regional proportion of the 10% highest DF area for 10 patients

❖ Spatiotemporal mean variance: highest DF의 시간, 공간에 따른 분산정도
❖ High mean variance의 의미: spatiotemporally high heterogeneity

* p<0.001 vs. CV0.4m/s; † p<0.01 vs. CV0.4m/s; ‡ p<0.05 vs. CV0.4m/s
Result: Phase singularity and DF ablation

A. Number of PS per 1 ms

![Graph showing the number of PS per 1 ms against conduction velocity.](image)

- Number of PS: 51.2, 49.8, 51.8, 26.8*, 25.5‡
- Conduction Velocity [m/s]: 0.2, 0.3, 0.4, 0.5, 0.6

B. Longest PS life-span

![Graph showing the longest PS life-span against conduction velocity.](image)

- Longest PS Life-span [ms]: 3890†, 3297, 3320, 2003†, 1995
- Conduction Velocity [m/s]: 0.2, 0.3, 0.4, 0.5, 0.6

ANOVA test**, p<0.001

C. AF maintenance rates after DF ablation

![Graph showing AF maintenance rates against conduction velocity.](image)

- AF maintenance rate [%]: 60, 41‡, 62.2, 31.3‡, 41‡, 28.9, 19.7*, 13.1‡, 0‡, 0, 0
- Conduction Velocity [m/s]: 0.2, 0.3, 0.4, 0.5, 0.6

ANOVA test**, p<0.001

- Higher CV: long wavelength → few wavebreak allowed AF is terminated easily.
- Lower CV: AF is induced easily, well maintained, and hard to terminate due to continuous wavebreak.

*, p<0.001 vs. CV0.4m/s; †, p<0.01 vs. CV0.4m/s; ‡, p<0.05 vs. CV0.4m/s

**, ANOVA test is applied with all CV conditions.
DF and PS maps, and ablation outcome depending on CV

A. CV=0.2m/s

B. CV=0.3m/s

C. CV=0.4m/s

D. CV=0.5m/s

E. CV=0.6m/s

DF map (6 sec) PS map (6 sec)

Red * : Action potential recording site
Virtual ablation targeting the highest 10% DF defragmented AF in 47%.

However, the location of high DF site is highly variable spatiotemporally.

Spatiotemporal stability of rotor is dependent on the condition of CV.
Conclusion

DF ablation is more likely to terminate or defragment AF under the conditions of short AF maintenance duration at AF induction circumstance, but not under conditions with long-lasting and sustained AF, depending on the CV.
Acknowledgement

Hui-Nam Pak, MD, PhD.
Moon Hyung Lee, MD, PhD.
Boyoung Joung, MD, PhD.
Jae Sun Um, MD, PhD.
Tae Hoon Kim, MD.

Dong Geum Shin, MD.
Young-A Park, MD.
Young-Min Lim, MD.
Pil Sung Yang, MD.
Hee Tae Ryu, MD, PhD.

Eun-Bo Shim, PhD.
Min Ki Hwang, PhD.
Young Seon Lee, PhD.
Jae Hyung Park, PhD.

Hye-Sun Gong.
Song-Yi Yang.
So-Youon Park.