Benign and Malignant Early Repolarization Syndrome

Korean Heart Rhythm Society, Seoul
Peter Noseworthy, MD
Associate Professor
Mayo Clinic

June 23rd, 2017
28M Suffers VF Arrest

- Standing at a computer at work
- EMS documents VF, single shock
- Good neurologic recovery
- Coronary angiography normal
- ECG normal, EPS negative
- ICD implanted, treated with carvedilol
Five Years Later

- Brief LOC while watching a movie on Christmas morning
- ICD shock terminated VF
ECG Review.....
What is Going on Here.....?

Idiopathic VF?

Early repolarization?

Are there implications for his family?

Is there a role for genetic testing?

How can we prevent further ICD shocks?
What Causes the Early Repolarization Pattern?
Early descriptions: Hypothermia
Generation of the Cardiac AP

Phase 0: Depolarization
Phase 1: Notch
Phase 2: Plateau
Phase 3: Repolarization
Phase 4: Resting Potential
Generation of the Surface ECG

0 mV

-85 mV

Outward

Inward

ECG

QRS

ST

T

Epicardium

Endocardium

I_{na}

I_{Ca}

I_{TO}

I_{ks}

I_{kr}

Endocardium

0 mV

-85 mV
“J” wave (Increased I_{TO} in RVOT Epicardium)

Increased I_{TO} in RVOT epicardium results in:

1. Prominent phase 1 notch
 - Results in R’
2. Loss of AP dome
 - Results in ST elevation

Based on Yan and Antzelevitch Circ, 1999
Phase II Reentry

ECG

QRS ST T

Outward Inward

I_{TO} I_{kr}

Functional reentry

0 mV

-85 mV

Epicardium Endocardium
Phase 2 Reentry and VF

Endo

Epi 1

Epi 2

ECG

J wave

J wave

50 mV

50 mV

50 mV

500 msec
Pause
VPB
Accentuation of J-point elevation
VPB
Accentuation of J-point elevation
Prominent J-point elevation
Short coupled VPB
Short coupled VPB
Short coupled VPB
Ventricular fibrillation
<table>
<thead>
<tr>
<th>J Point</th>
<th>ST segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notched</td>
<td>Ascending</td>
</tr>
<tr>
<td>Slurred</td>
<td>Ascending</td>
</tr>
<tr>
<td>Slurred</td>
<td>Horizontal</td>
</tr>
</tbody>
</table>
What Is the Significance of the Pattern?
Differential Diagnosis

- Juvenile ST pattern
- Pericardial disease
- Hypothermia
- Hypertensive heart disease
- Athlete’s heart
- Myocardial ischemia
- STEMI (i.e., anteroseptal myocardial infarction)
- Fragmented QRS (terminal notching)
- Hypocalcemia
- Hyperkalemia
- Arrhythmogenic right ventricular cardiomyopathy
- Takotsubo cardiomyopathy
- Neurologic causes (intracerebral bleeding, acute brain injury)
- Myocarditis
- Chagas disease
- Cocaine use

NORMAL VARIANT?

STEMI = ST segment elevation myocardial infarction
Antzelevitch Heart Rhythm, 2016
ERP in the General Population

Prevalence of ERP by Sex and Age in the H2K and FHS cohorts

Noseworthy JACC, 2010
Clinical Correlates of ERP
Independent Predictors of ERP in Multivariable Regression Model

<table>
<thead>
<tr>
<th></th>
<th>OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Framingham Heart Study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, per 10 yrs</td>
<td>0.84 (0.71-1.00)</td>
<td>0.05</td>
</tr>
<tr>
<td>Male vs. female</td>
<td>4.10 (2.80-5.80)</td>
<td>1.0 x 10^{-14}</td>
</tr>
<tr>
<td>Cornell voltage, per mV</td>
<td>0.41 (0.28-0.61)</td>
<td>1.4 x 10^{-5}</td>
</tr>
<tr>
<td>Sokolow-Lyon, per mV</td>
<td>3.20 (2.50-4.10)</td>
<td>1.3 x 10^{-20}</td>
</tr>
<tr>
<td>Systolic BP, per 10 mm Hg</td>
<td>0.82 (0.72-0.92)</td>
<td>0.001</td>
</tr>
<tr>
<td>RR interval, per 100 ms</td>
<td>1.20 (1.10-1.30)</td>
<td>4.3 x 10^{-5}</td>
</tr>
<tr>
<td>Health 2000 Survey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, per 10 yrs</td>
<td>0.95 (0.80-1.12)</td>
<td>0.51</td>
</tr>
<tr>
<td>Male vs. female</td>
<td>2.74 (1.80-4.20)</td>
<td>5.6 x 10^{-6}</td>
</tr>
<tr>
<td>Cornell voltage, per mV</td>
<td>0.22 (0.15-0.32)</td>
<td>3.9 x 10^{-16}</td>
</tr>
<tr>
<td>Sokolow-Lyon, per mV</td>
<td>4.30 (3.40-5.40)</td>
<td>1.8 x 10^{-34}</td>
</tr>
<tr>
<td>Systolic BP, per 10 mm Hg</td>
<td>0.78 (0.69-0.88)</td>
<td>7.8 x 10^{-5}</td>
</tr>
<tr>
<td>QTc interval, per 20 ms</td>
<td>0.61 (0.51-0.72)</td>
<td>1.0 x 10^{-8}</td>
</tr>
<tr>
<td>QRS interval, per 10 ms</td>
<td>0.77 (0.63-0.95)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Noseworthy JACC, 2010
Prognostic Significance
Case-Control Study: ERS present in 31% of 206 idiopathic VF cases

HR 2.1 (1.2-3.5); P=0.008

Haissiguerre NEJM, 2008
Prognostic Significance
Cohort Study: general population

Cardiac Death

Survival free of death from cardiac causes

<table>
<thead>
<tr>
<th>Years</th>
<th>No. at risk</th>
<th>No J-point elevation</th>
<th>J-point elevation >0.2 mV in inferior leads</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10,234</td>
<td>9,961</td>
<td>8,357</td>
</tr>
<tr>
<td>10</td>
<td>9,961</td>
<td>9,561</td>
<td>8,357</td>
</tr>
<tr>
<td>20</td>
<td>8,357</td>
<td>8,357</td>
<td>6,485</td>
</tr>
<tr>
<td>30</td>
<td>6,485</td>
<td>6,485</td>
<td>1,708</td>
</tr>
<tr>
<td>40</td>
<td>1,708</td>
<td>1,708</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Survival free of death from cardiac causes

P<0.001

Arrhythmic Death

Survival free of death from arrhythmia

<table>
<thead>
<tr>
<th>Years</th>
<th>No. at risk</th>
<th>No J-point elevation</th>
<th>J-point elevation >0.2 mV in inferior leads</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10,234</td>
<td>9,961</td>
<td>8,357</td>
</tr>
<tr>
<td>10</td>
<td>9,961</td>
<td>9,561</td>
<td>8,357</td>
</tr>
<tr>
<td>20</td>
<td>8,357</td>
<td>8,357</td>
<td>6,485</td>
</tr>
<tr>
<td>30</td>
<td>6,485</td>
<td>6,484</td>
<td>1,708</td>
</tr>
<tr>
<td>40</td>
<td>1,708</td>
<td>1,708</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Survival free of death from arrhythmia

P<0.001

Haissiguerre NEJM, 2009

No J-point elevation

J-point elevation >0.2 mV in inferior leads

10,864 middle-aged subjects (mean [±SD] age, 44±8 years)
How Does This Compare to Other ECG Findings?

<table>
<thead>
<tr>
<th>Variable</th>
<th>No. of Subjects</th>
<th>Relative Risk (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prolonged QTc interval</td>
<td>668</td>
<td>1.20 (1.02-1.42)</td>
<td>0.03</td>
</tr>
<tr>
<td>Left ventricular hypertrophy according to Sokolow-Lyon criteria</td>
<td>3,410</td>
<td>1.16 (1.05-1.27)</td>
<td>0.004</td>
</tr>
<tr>
<td>End-point elevation in inferior leads</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥0.1 mV</td>
<td>384</td>
<td>1.28 (1.04-1.59)</td>
<td>0.03</td>
</tr>
<tr>
<td>>0.2 mV</td>
<td>36</td>
<td>2.98 (1.85-4.92)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

36/ 10,864 people (0.33%)
“Malignant Form?”

Notching (44%) more common than slurring (5%) in SCD survivors

Merchant, Noseworthy AJC 2009
Spectrum of disease

ER syndrome, resuscitated cardiac arrest

Family history for sudden cardiac death

Dynamic augmentation of J waves

Short coupled PVCs

Co-existing disorder (Brugada or SQTS)

Prominent (>0.2 mV) J waves

Widespread/global J-waves/ER pattern

ER waves in the inferior leads

Anterior/lateral ER, ascending ST segments
How Do We Diagnose Early Repolarization Syndrome?
Diagnostic Criteria for ERS

<table>
<thead>
<tr>
<th>Points</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Clinical History</td>
<td></td>
</tr>
<tr>
<td>A. Unexplained cardiac arrest, documented VF or polymorphic VT</td>
<td>3</td>
</tr>
<tr>
<td>B. Suspected arrhythmic syncope</td>
<td>2</td>
</tr>
<tr>
<td>C. Syncope of unclear mechanism/unclear etiology</td>
<td>1</td>
</tr>
</tbody>
</table>

ER = Early repolarization; ERS = early repolarization syndrome; PVC = premature ventricular contraction; VF = ventricular fibrillation; VT = ventricular tachycardia
Consensus Statement: 2016

Early Repolarization (ER) Expert Consensus Recommendations on Early Repolarization Diagnosis

<table>
<thead>
<tr>
<th></th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ER syndrome is diagnosed in the presence of J-point elevation ≥ 1 mm in ≥ 2 contiguous inferior and/or lateral leads of a standard 12-lead ECG in a patient resuscitated from otherwise unexplained VF/polymorphic VT</td>
</tr>
<tr>
<td>2</td>
<td>ER syndrome can be diagnosed in an SCD victim with a negative autopsy and medical chart review with a previous ECG demonstrating J-point elevation ≥ 1 mm in ≥ 2 contiguous inferior and/or lateral leads of a standard 12-lead ECG</td>
</tr>
<tr>
<td>3</td>
<td>ER pattern can be diagnosed in the presence of J-point elevation ≥ 1 mm in ≥ 2 contiguous inferior and/or lateral leads of a standard 12-lead ECG</td>
</tr>
</tbody>
</table>
Is it a Genetic Syndrome?
Individual pedigrees: seven genes implicated

- KCNJ8
- ABCC9
- CACNA1C
- CACNB2
- CACNA2D1
- SCN5A
- SCN10A

\[\text{I}_{\text{K-ATP}} \]

\[\text{I}_{\text{Na}} \]

\[\text{L-type calcium} \]

<20% of ERS probands
What about at the population level?
ERP May Be Heritable

<table>
<thead>
<tr>
<th>Sibling Recurrence risks and ORs for ERP in Siblings of ERP + Individuals, Unadjusted and Adjusted for Age and Sex, in the FHS</th>
<th>OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERP rate in general population</td>
<td>0.06 (0.05-0.07)</td>
<td></td>
</tr>
<tr>
<td>ERP rate in siblings of ERP + subjects</td>
<td>0.11 (0.03-0.19)</td>
<td></td>
</tr>
<tr>
<td>Sibling recurrence risk ((\lambda_s))^*</td>
<td>1.90 (1.31-2.70)</td>
<td></td>
</tr>
<tr>
<td>OR for ERP in sibs (unadjusted)</td>
<td>2.20 (1.00-4.90)</td>
<td>0.047</td>
</tr>
<tr>
<td>OR for ERP in sibs (adjusted)</td>
<td>2.00 (0.88-4.40)</td>
<td>0.10</td>
</tr>
</tbody>
</table>
ERP GWAS Interesting Candidates
Genetic architecture is still unknown…

The most biologically relevant finding was intronic to \textit{KCND3}: rs17029069 (odds ratio 1.46; 95\% confidence interval 1.25–1.69; $P=8.5\times10^{-7}$).

Sinner, Noseworthy Heart Rhythm, 2012
What About Early Repolarization Pattern in Athletes?
ERP Prevalence in Athletes

<table>
<thead>
<tr>
<th>Study, y</th>
<th>Athlete characteristics</th>
<th>Prevalence of ERP (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosso et al, (16), 2008</td>
<td>Non-competitive amateur endurance runners</td>
<td>22</td>
</tr>
<tr>
<td>Tikkanen et al, (13), 2011</td>
<td>Finnish and American amateur and collegiate athletes combined</td>
<td>31.5</td>
</tr>
<tr>
<td>Noseworthy et al, (7), 2011</td>
<td>Collegiate rowers and football players</td>
<td>25.1</td>
</tr>
<tr>
<td>Junttila et al, (5), 2011</td>
<td>Collegiate athletes</td>
<td>30</td>
</tr>
<tr>
<td>Swaitowiec et al, (26), 2009</td>
<td>Olympic athletes (variety of sports)</td>
<td>23.3</td>
</tr>
<tr>
<td>Zoneraich et al, (27), 1977</td>
<td>Marathon runners</td>
<td>58</td>
</tr>
<tr>
<td>Bianco et al, (28), 2001</td>
<td>Top-ranking distance runners, soccer players, cyclists</td>
<td>89</td>
</tr>
</tbody>
</table>

ERP = early repolarization pattern
Typical ‘malignant ERP’
horizontal ST segment

Typical ‘athlete ERP’
ascending ST segment
ERP in Athletes (n=879)

- No Non-Anterior ERP: 74.9%
- Isolated Lateral ERP: 21.3%
- Lateral and Inferior ERP: 3.8%
- Isolated Inferior ERP: 2.5%

Noseworthy Circ AE, 2011
ERP in Athletes: Dynamic finding

All Sports (n=148)

<table>
<thead>
<tr>
<th></th>
<th>Preseason</th>
<th>Postseason</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>All sports (n=148)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERP 55 (37.2)</td>
<td>78 (52.7)</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>Inferior ERP subtype</td>
<td>6 (4.1)</td>
<td>12 (8.1)</td>
<td>0.031</td>
</tr>
</tbody>
</table>

Football (n=78)

<table>
<thead>
<tr>
<th></th>
<th>Preseason</th>
<th>Postseason</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERP 28 (35.9)</td>
<td>34 (44.9)</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Inferior ERP subtype</td>
<td>3 (3.8)</td>
<td>6 (7.7)</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Crew (n=68)

<table>
<thead>
<tr>
<th></th>
<th>Preseason</th>
<th>Postseason</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERP 27 (39.7)</td>
<td>43 (63.2)</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Inferior ERP subtype</td>
<td>3 (4.4)</td>
<td>6 (8.8)</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Data are presented as n (%). Abbreviation as in Table 2. *compares preseason to postseason*
How Does ERS Differ from Brugada Syndrome?
Similarities between BS and ERS

- Male predominance
- Age of first event 30-50
- KCNJ8, CACNA1C, CACNB2, CACNA2D, SCN5A, ABCC9, SCN10A
- VF often occurs during sleep or at a low level of physical activity
- VT/VF trigger is phase 2 reentry
- Ameliorative response to quinidine, isoproterenol, cilostazol, pacing
- Vagally mediated accentuation of ECG pattern
- Accentuated by fever or hypothermia
Differences between BS and ERS

<table>
<thead>
<tr>
<th></th>
<th>BrS</th>
<th>ERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region</td>
<td>RVOT</td>
<td>Inferior LV</td>
</tr>
<tr>
<td>Leads</td>
<td>V1-V3</td>
<td>Inferolateral</td>
</tr>
<tr>
<td>Geography</td>
<td>Common in Asia</td>
<td>ERP common in African descent, ERS not specific to region</td>
</tr>
<tr>
<td>Late potential on SAECG</td>
<td>Common</td>
<td>Uncommon</td>
</tr>
<tr>
<td>AF prevalence</td>
<td>Higher</td>
<td>Lower</td>
</tr>
<tr>
<td>Na blocker challenge</td>
<td>Increased J-wave (I<sub>TO</sub> effect)</td>
<td>Reduced J-wave manifestation (hidden in QRS)</td>
</tr>
</tbody>
</table>

Antzelevitch Heart Rhythm, 2006
How Do We Treat?
Expert Consensus Recommendations

Class I
- ICD in patients with ER syndrome + cardiac arrest

Class IIa
- Isoproterenol for electrical storms in ERS
- Quinidine + ICD for secondary prevention of VF

Class IIb
- Consider ICD in symptomatic family members of ERS patients with a history of syncope + ERP
- Consider ICD in asymptomatic pts with high-risk ERP + strong family history unexplained sudden death

Class III
- ICD implantation is not recommended asymptomatic patients with an isolated ER ECG pattern

Patton Heart Rhythm, 2016
Take Home Points

- ER pattern is common and may be benign in most people
- ERS shares some pathophysiology and clinical characteristics with Brugada syndrome
- Stepwise approach to diagnosis and treatment that considers symptoms, ECG, and family history